# CTRGCN Project [Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition](https://arxiv.org/abs/2107.12213) ## Abstract Graph convolutional networks (GCNs) have been widely used and achieved remarkable results in skeleton-based action recognition. In GCNs, graph topology dominates feature aggregation and therefore is the key to extracting representative features. In this work, we propose a novel Channel-wise Topology Refinement Graph Convolution (CTR-GC) to dynamically learn different topologies and effectively aggregate joint features in different channels for skeleton-based action recognition. The proposed CTR-GC models channel-wise topologies through learning a shared topology as a generic prior for all channels and refining it with channel-specific correlations for each channel. Our refinement method introduces few extra parameters and significantly reduces the difficulty of modeling channel-wise topologies. Furthermore, via reformulating graph convolutions into a unified form, we find that CTR-GC relaxes strict constraints of graph convolutions, leading to stronger representation capability. Combining CTR-GC with temporal modeling modules, we develop a powerful graph convolutional network named CTR-GCN which notably outperforms state-of-the-art methods on the NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets.
## Usage ### Setup Environment Please refer to [Installation](https://mmaction2.readthedocs.io/en/latest/get_started/installation.html) to install MMAction2. Assume that you are located at `$MMACTION2/projects/ctrgcn`. Add the current folder to `PYTHONPATH`, so that Python can find your code. Run the following command in the current directory to add it. > Please run it every time after you opened a new shell. ```shell export PYTHONPATH=`pwd`:$PYTHONPATH ``` ### Data Preparation Prepare the NTU60 dataset according to the [instruction](https://github.com/open-mmlab/mmaction2/blob/main/tools/data/skeleton/README.md). Create a symbolic link from `$MMACTION2/data` to `./data` in the current directory, so that Python can locate your data. Run the following command in the current directory to create the symbolic link. ```shell ln -s ../../data ./data ``` ### Training commands **To train with single GPU:** ```bash mim train mmaction configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py ``` **To train with multiple GPUs:** ```bash mim train mmaction configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py --launcher pytorch --gpus 8 ``` **To train with multiple GPUs by slurm:** ```bash mim train mmaction configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py --launcher slurm \ --gpus 8 --gpus-per-node 8 --partition $PARTITION ``` ### Testing commands **To test with single GPU:** ```bash mim test mmaction configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py --checkpoint $CHECKPOINT ``` **To test with multiple GPUs:** ```bash mim test mmaction configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py --checkpoint $CHECKPOINT --launcher pytorch --gpus 8 ``` **To test with multiple GPUs by slurm:** ```bash mim test mmaction configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py --checkpoint $CHECKPOINT --launcher slurm \ --gpus 8 --gpus-per-node 8 --partition $PARTITION ``` ## Results ### NTU60_XSub_2D | frame sampling strategy | modality | gpus | backbone | top1 acc | testing protocol | config | ckpt | log | | :---------------------: | :------: | :--: | :------: | :------: | :--------------: | :--------------------------------------------: | :------------------------------------------: | :-----------------------------------------: | | uniform 100 | joint | 8 | CTRGCN | 89.6 | 10 clips | [config](./configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/projects/ctrgcn/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d_20230308-7aba454e.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/projects/ctrgcn/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d.log) | ### NTU60_XSub_3D | frame sampling strategy | modality | gpus | backbone | top1 acc | testing protocol | config | ckpt | log | | :---------------------: | :------: | :--: | :------: | :------: | :--------------: | :--------------------------------------------: | :------------------------------------------: | :-----------------------------------------: | | uniform 100 | joint | 8 | CTRGCN | 89.0 | 10 clips | [config](./configs/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d.py) | [ckpt](https://download.openmmlab.com/mmaction/v1.0/projects/ctrgcn/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d_20230308-950dca0a.pth) | [log](https://download.openmmlab.com/mmaction/v1.0/projects/ctrgcn/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d/ctrgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d.log) | ## Citation ```bibtex @inproceedings{chen2021channel, title={Channel-wise topology refinement graph convolution for skeleton-based action recognition}, author={Chen, Yuxin and Zhang, Ziqi and Yuan, Chunfeng and Li, Bing and Deng, Ying and Hu, Weiming}, booktitle={CVPR}, pages={13359--13368}, year={2021} } ```