import torch import torch.nn as nn from clip.model import Transformer from mmengine.model import BaseModule class TransformerAdapter(BaseModule): def __init__(self, clip_model: nn.Module, num_segs: int, num_layers: int = 6): super(TransformerAdapter, self).__init__() self.num_segs = num_segs embed_dim = clip_model.text_projection.shape[1] transformer_width = clip_model.ln_final.weight.shape[0] transformer_heads = transformer_width // 64 self.frame_position_embeddings = nn.Embedding(self.num_segs, embed_dim) self.transformer = Transformer( width=embed_dim, layers=num_layers, heads=transformer_heads) def init_weights(self): for module in self.modules(): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def forward(self, x: torch.Tensor): b, seq_length, c = x.size() x_original = x position_ids = torch.arange( seq_length, dtype=torch.long, device=x.device) embeddings = self.frame_position_embeddings(position_ids) x = x + embeddings.unsqueeze(0) x = x.transpose(0, 1) # NLD -> LND x = self.transformer(x) x = x.transpose(0, 1) # LND -> NLD x = x.type(x_original.dtype) + x_original return x.mean(dim=1)