# PyTorch 2.0 Compatibility and Benchmark PyTorch introduced `torch.compile` in its 2.0 release. It compiles your model to speedup trainning & validation. We provide a benchmark result and compatibility of typical models in MMAction2. Except for one model (MViT) that fails to compile, the performance of other models remains consistent before and after compilation. | Config | compiled | Train time / iter (s) | GPU memory (M) | test metric | | ------------------------------------------------------------------------- | -------- | --------------------- | -------------- | ------------ | | tsn_imagenet-pretrained-r50_8xb32-1x1x16-50e_sthv2-rgb | False | 0.50 | 42537 | 36.55 | | tsn_imagenet-pretrained-r50_8xb32-1x1x16-50e_sthv2-rgb | True | 0.61 | 53149 | 36.72 | | timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb | False | 0.688 | 14263 | 77.69 | | timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb | True | 0.691 | 13863 | 77.57 | | stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d | False | 0.0305 | 1184 | 91.69 | | stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d | True | 0.0298 | 1273 | 91.64 | | slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint | False | 0.498 | 9581 | 93.6 | | slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint | True | 0.505 | 11968 | 93.49 | | slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb | False | 0.17 | 8278 | 20.76 | | slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb | True | 0.1835 | 12004 | 21.67 | | swin-tiny-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb | False | 0.323 | 21651 | 78.90 | | swin-tiny-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb | True | 0.262 | 20905 | 78.70 | | slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb | False | 0.098 | 5777 | 75.12 | | slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb | True | 0.0942 | 7095 | 75.15 | | mvit-small-p244_32xb16-16x4x1-200e_kinetics400-rgb | Fail | incompatible | incompatible | incompatible |