|
ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt'
|
|
ann_file_val = 'data/kinetics400/kinetics400_val_list_videos.txt'
|
|
auto_scale_lr = dict(base_batch_size=256, enable=False)
|
|
data_root = 'data/kinetics400/videos_train'
|
|
data_root_val = 'data/kinetics400/videos_val'
|
|
dataset_type = 'VideoDataset'
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
interval=3, max_keep_ckpts=3, save_best='auto', type='CheckpointHook'),
|
|
logger=dict(ignore_last=False, interval=20, type='LoggerHook'),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
runtime_info=dict(type='RuntimeInfoHook'),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
sync_buffers=dict(type='SyncBuffersHook'),
|
|
timer=dict(type='IterTimerHook'))
|
|
default_scope = 'mmaction'
|
|
env_cfg = dict(
|
|
cudnn_benchmark=False,
|
|
dist_cfg=dict(backend='nccl'),
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
|
file_client_args = dict(io_backend='disk')
|
|
load_from = None
|
|
log_level = 'INFO'
|
|
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=20)
|
|
model = dict(
|
|
backbone=dict(
|
|
depth=50,
|
|
norm_eval=False,
|
|
pretrained='https://download.pytorch.org/models/resnet50-11ad3fa6.pth',
|
|
type='ResNet'),
|
|
cls_head=dict(
|
|
average_clips='prob',
|
|
consensus=dict(dim=1, type='AvgConsensus'),
|
|
dropout_ratio=0.4,
|
|
in_channels=2048,
|
|
init_std=0.01,
|
|
num_classes=400,
|
|
spatial_type='avg',
|
|
type='TSNHead'),
|
|
data_preprocessor=dict(
|
|
format_shape='NCHW',
|
|
mean=[
|
|
123.675,
|
|
116.28,
|
|
103.53,
|
|
],
|
|
std=[
|
|
58.395,
|
|
57.12,
|
|
57.375,
|
|
],
|
|
type='ActionDataPreprocessor'),
|
|
test_cfg=None,
|
|
train_cfg=None,
|
|
type='Recognizer2D')
|
|
optim_wrapper = dict(
|
|
clip_grad=dict(max_norm=40, norm_type=2),
|
|
optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0001))
|
|
param_scheduler = [
|
|
dict(
|
|
begin=0,
|
|
by_epoch=True,
|
|
end=100,
|
|
gamma=0.1,
|
|
milestones=[
|
|
40,
|
|
80,
|
|
],
|
|
type='MultiStepLR'),
|
|
]
|
|
resume = False
|
|
test_cfg = dict(type='TestLoop')
|
|
test_dataloader = dict(
|
|
batch_size=1,
|
|
dataset=dict(
|
|
ann_file='data/kinetics400/kinetics400_val_list_videos.txt',
|
|
data_prefix=dict(video='data/kinetics400/videos_val'),
|
|
pipeline=[
|
|
dict(io_backend='disk', type='DecordInit'),
|
|
dict(
|
|
clip_len=1,
|
|
frame_interval=1,
|
|
num_clips=25,
|
|
test_mode=True,
|
|
type='SampleFrames'),
|
|
dict(type='DecordDecode'),
|
|
dict(scale=(
|
|
-1,
|
|
256,
|
|
), type='Resize'),
|
|
dict(crop_size=224, type='TenCrop'),
|
|
dict(input_format='NCHW', type='FormatShape'),
|
|
dict(type='PackActionInputs'),
|
|
],
|
|
test_mode=True,
|
|
type='VideoDataset'),
|
|
num_workers=8,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
test_evaluator = dict(type='AccMetric')
|
|
test_pipeline = [
|
|
dict(io_backend='disk', type='DecordInit'),
|
|
dict(
|
|
clip_len=1,
|
|
frame_interval=1,
|
|
num_clips=25,
|
|
test_mode=True,
|
|
type='SampleFrames'),
|
|
dict(type='DecordDecode'),
|
|
dict(scale=(
|
|
-1,
|
|
256,
|
|
), type='Resize'),
|
|
dict(crop_size=224, type='TenCrop'),
|
|
dict(input_format='NCHW', type='FormatShape'),
|
|
dict(type='PackActionInputs'),
|
|
]
|
|
train_cfg = dict(
|
|
max_epochs=100, type='EpochBasedTrainLoop', val_begin=1, val_interval=1)
|
|
train_dataloader = dict(
|
|
batch_size=32,
|
|
dataset=dict(
|
|
ann_file='data/kinetics400/kinetics400_train_list_videos.txt',
|
|
data_prefix=dict(video='data/kinetics400/videos_train'),
|
|
pipeline=[
|
|
dict(io_backend='disk', type='DecordInit'),
|
|
dict(
|
|
clip_len=1, frame_interval=1, num_clips=8,
|
|
type='SampleFrames'),
|
|
dict(type='DecordDecode'),
|
|
dict(scale=(
|
|
-1,
|
|
256,
|
|
), type='Resize'),
|
|
dict(
|
|
input_size=224,
|
|
max_wh_scale_gap=1,
|
|
random_crop=False,
|
|
scales=(
|
|
1,
|
|
0.875,
|
|
0.75,
|
|
0.66,
|
|
),
|
|
type='MultiScaleCrop'),
|
|
dict(keep_ratio=False, scale=(
|
|
224,
|
|
224,
|
|
), type='Resize'),
|
|
dict(flip_ratio=0.5, type='Flip'),
|
|
dict(input_format='NCHW', type='FormatShape'),
|
|
dict(type='PackActionInputs'),
|
|
],
|
|
type='VideoDataset'),
|
|
num_workers=8,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=True, type='DefaultSampler'))
|
|
train_pipeline = [
|
|
dict(io_backend='disk', type='DecordInit'),
|
|
dict(clip_len=1, frame_interval=1, num_clips=8, type='SampleFrames'),
|
|
dict(type='DecordDecode'),
|
|
dict(scale=(
|
|
-1,
|
|
256,
|
|
), type='Resize'),
|
|
dict(
|
|
input_size=224,
|
|
max_wh_scale_gap=1,
|
|
random_crop=False,
|
|
scales=(
|
|
1,
|
|
0.875,
|
|
0.75,
|
|
0.66,
|
|
),
|
|
type='MultiScaleCrop'),
|
|
dict(keep_ratio=False, scale=(
|
|
224,
|
|
224,
|
|
), type='Resize'),
|
|
dict(flip_ratio=0.5, type='Flip'),
|
|
dict(input_format='NCHW', type='FormatShape'),
|
|
dict(type='PackActionInputs'),
|
|
]
|
|
val_cfg = dict(type='ValLoop')
|
|
val_dataloader = dict(
|
|
batch_size=32,
|
|
dataset=dict(
|
|
ann_file='data/kinetics400/kinetics400_val_list_videos.txt',
|
|
data_prefix=dict(video='data/kinetics400/videos_val'),
|
|
pipeline=[
|
|
dict(io_backend='disk', type='DecordInit'),
|
|
dict(
|
|
clip_len=1,
|
|
frame_interval=1,
|
|
num_clips=8,
|
|
test_mode=True,
|
|
type='SampleFrames'),
|
|
dict(type='DecordDecode'),
|
|
dict(scale=(
|
|
-1,
|
|
256,
|
|
), type='Resize'),
|
|
dict(crop_size=224, type='CenterCrop'),
|
|
dict(input_format='NCHW', type='FormatShape'),
|
|
dict(type='PackActionInputs'),
|
|
],
|
|
test_mode=True,
|
|
type='VideoDataset'),
|
|
num_workers=8,
|
|
persistent_workers=True,
|
|
sampler=dict(shuffle=False, type='DefaultSampler'))
|
|
val_evaluator = dict(type='AccMetric')
|
|
val_pipeline = [
|
|
dict(io_backend='disk', type='DecordInit'),
|
|
dict(
|
|
clip_len=1,
|
|
frame_interval=1,
|
|
num_clips=8,
|
|
test_mode=True,
|
|
type='SampleFrames'),
|
|
dict(type='DecordDecode'),
|
|
dict(scale=(
|
|
-1,
|
|
256,
|
|
), type='Resize'),
|
|
dict(crop_size=224, type='CenterCrop'),
|
|
dict(input_format='NCHW', type='FormatShape'),
|
|
dict(type='PackActionInputs'),
|
|
]
|
|
vis_backends = [
|
|
dict(type='LocalVisBackend'),
|
|
]
|
|
visualizer = dict(
|
|
type='ActionVisualizer', vis_backends=[
|
|
dict(type='LocalVisBackend'),
|
|
])
|
|
|