|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from mmaction.structures import bbox2result
|
|
|
|
|
|
def test_bbox2result():
|
|
bboxes = torch.tensor([[0.072, 0.47, 0.84, 0.898],
|
|
[0.23, 0.215, 0.781, 0.534],
|
|
[0.195, 0.128, 0.643, 0.944],
|
|
[0.236, 0.189, 0.689, 0.74],
|
|
[0.375, 0.371, 0.726, 0.804],
|
|
[0.024, 0.398, 0.776, 0.719]])
|
|
labels = torch.tensor([[-1.650, 0.515, 0.798, 1.240],
|
|
[1.368, -1.128, 0.037, -1.087],
|
|
[0.481, -1.303, 0.501, -0.463],
|
|
[-0.356, 0.126, -0.840, 0.438],
|
|
[0.079, 1.269, -0.263, -0.538],
|
|
[-0.853, 0.391, 0.103, 0.398]])
|
|
num_classes = 4
|
|
|
|
result = bbox2result(bboxes, labels, num_classes)
|
|
assert np.all(
|
|
np.isclose(
|
|
result[0],
|
|
np.array([[0.072, 0.47, 0.84, 0.898, 0.515],
|
|
[0.236, 0.189, 0.689, 0.74, 0.126],
|
|
[0.375, 0.371, 0.726, 0.804, 1.269],
|
|
[0.024, 0.398, 0.776, 0.719, 0.391]])))
|
|
assert np.all(
|
|
np.isclose(
|
|
result[1],
|
|
np.array([[0.072, 0.47, 0.84, 0.898, 0.798],
|
|
[0.23, 0.215, 0.781, 0.534, 0.037],
|
|
[0.195, 0.128, 0.643, 0.944, 0.501],
|
|
[0.024, 0.398, 0.776, 0.719, 0.103]])))
|
|
assert np.all(
|
|
np.isclose(
|
|
result[2],
|
|
np.array([[0.072, 0.47, 0.84, 0.898, 1.24],
|
|
[0.236, 0.189, 0.689, 0.74, 0.438],
|
|
[0.024, 0.398, 0.776, 0.719, 0.398]])))
|
|
|
|
|
|
result = bbox2result(bboxes, labels, num_classes, -1.0)
|
|
assert np.all(
|
|
np.isclose(result[0], np.array([[0.375, 0.371, 0.726, 0.804, 1.269]])))
|
|
assert np.all(
|
|
np.isclose(
|
|
result[1],
|
|
np.array([[0.23, 0.215, 0.781, 0.534, 0.037],
|
|
[0.195, 0.128, 0.643, 0.944, 0.501]])))
|
|
assert np.all(
|
|
np.isclose(
|
|
result[2],
|
|
np.array([[0.072, 0.47, 0.84, 0.898, 1.240],
|
|
[0.236, 0.189, 0.689, 0.74, 0.438],
|
|
[0.024, 0.398, 0.776, 0.719, 0.398]])))
|
|
|