mmaction2 / tests /models /recognizers /test_recognizer3d.py
niobures's picture
mmaction2
d3dbf03 verified
# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import MagicMock
import torch
from mmaction.registry import MODELS
from mmaction.structures import ActionDataSample
from mmaction.testing import get_recognizer_cfg
from mmaction.utils import register_all_modules
def train_test_step(cfg, input_shape):
recognizer = MODELS.build(cfg.model)
num_classes = cfg.model.cls_head.num_classes
data_batch = {
'inputs': [torch.randint(0, 256, input_shape)],
'data_samples': [ActionDataSample().set_gt_label(2)]
}
# test train_step
optim_wrapper = MagicMock()
loss_vars = recognizer.train_step(data_batch, optim_wrapper)
assert 'loss' in loss_vars
assert 'loss_cls' in loss_vars
optim_wrapper.update_params.assert_called_once()
# test test_step
with torch.no_grad():
predictions = recognizer.test_step(data_batch)
score = predictions[0].pred_score
assert len(predictions) == 1
assert score.shape == torch.Size([num_classes])
assert torch.min(score) >= 0
assert torch.max(score) <= 1
# test when average_clips is None
recognizer.cls_head.average_clips = None
num_views = 3
input_shape = (num_views, *input_shape[1:])
data_batch['inputs'] = [torch.randint(0, 256, input_shape)]
with torch.no_grad():
predictions = recognizer.test_step(data_batch)
score = predictions[0].pred_score
assert len(predictions) == 1
assert score.shape == torch.Size([num_views, num_classes])
return loss_vars, predictions
def test_i3d():
register_all_modules()
config = get_recognizer_cfg(
'i3d/i3d_imagenet-pretrained-r50_8xb8-32x2x1-100e_kinetics400-rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
input_shape = (1, 3, 8, 64, 64) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_r2plus1d():
register_all_modules()
config = get_recognizer_cfg(
'r2plus1d/r2plus1d_r34_8xb8-8x8x1-180e_kinetics400-rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
config.model['backbone']['norm_cfg'] = dict(type='BN3d')
input_shape = (1, 3, 8, 64, 64) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_slowfast():
register_all_modules()
config = get_recognizer_cfg(
'slowfast/slowfast_r50_8xb8-4x16x1-256e_kinetics400-rgb.py')
input_shape = (1, 3, 16, 64, 64) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_csn():
register_all_modules()
config = get_recognizer_cfg(
'csn/ircsn_ig65m-pretrained-r152_8xb12-32x2x1-58e_kinetics400-rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
input_shape = (1, 3, 8, 64, 64) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_timesformer():
register_all_modules()
config = get_recognizer_cfg(
'timesformer/timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb.py')
config.model['backbone']['pretrained'] = None
config.model['backbone']['img_size'] = 32
input_shape = (1, 3, 8, 32, 32) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_c3d():
register_all_modules()
config = get_recognizer_cfg(
'c3d/c3d_sports1m-pretrained_8xb30-16x1x1-45e_ucf101-rgb.py')
config.model['backbone']['pretrained'] = None
config.model['backbone']['out_dim'] = 512
input_shape = (1, 3, 16, 28, 28) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_slowonly():
register_all_modules()
config = get_recognizer_cfg(
'slowonly/slowonly_r50_8xb16-4x16x1-256e_kinetics400-rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
input_shape = (1, 3, 4, 32, 32) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_tpn_slowonly():
register_all_modules()
config = get_recognizer_cfg('tpn/tpn-slowonly_imagenet-pretrained-r50_'
'8xb8-8x8x1-150e_kinetics400-rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
input_shape = (1, 3, 4, 48, 48) # M C T H W
loss_vars, _ = train_test_step(config, input_shape=input_shape)
assert 'loss_aux' in loss_vars
assert loss_vars['loss_cls'] + loss_vars['loss_aux'] == loss_vars['loss']
def test_swin():
register_all_modules()
config = get_recognizer_cfg('swin/swin-tiny-p244-w877_in1k-pre_'
'8xb8-amp-32x2x1-30e_kinetics400-rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
input_shape = (1, 3, 4, 64, 64) # M C T H W
train_test_step(config, input_shape=input_shape)
def test_c2d():
register_all_modules()
config = get_recognizer_cfg(
'c2d/c2d_r50-in1k-pre_8xb32-8x8x1-100e_kinetics400-rgb.py')
config.model['backbone']['pretrained'] = None
input_shape = (1, 3, 8, 64, 64) # M C T H W
train_test_step(config, input_shape=input_shape)