|
|
|
import copy
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmaction.models import TPN
|
|
from mmaction.structures import ActionDataSample
|
|
from mmaction.testing import generate_backbone_demo_inputs
|
|
|
|
|
|
def get_label(label_):
|
|
label = []
|
|
for idx, one_label in enumerate(label_):
|
|
data_sample = ActionDataSample()
|
|
data_sample.set_gt_label(label_[idx])
|
|
label.append(data_sample)
|
|
return label
|
|
|
|
|
|
def test_tpn():
|
|
"""Test TPN backbone."""
|
|
|
|
tpn_cfg = dict(
|
|
in_channels=(1024, 2048),
|
|
out_channels=1024,
|
|
spatial_modulation_cfg=dict(
|
|
in_channels=(1024, 2048), out_channels=2048),
|
|
temporal_modulation_cfg=dict(downsample_scales=(8, 8)),
|
|
upsample_cfg=dict(scale_factor=(1, 1, 1)),
|
|
downsample_cfg=dict(downsample_scale=(1, 1, 1)),
|
|
level_fusion_cfg=dict(
|
|
in_channels=(1024, 1024),
|
|
mid_channels=(1024, 1024),
|
|
out_channels=2048,
|
|
downsample_scales=((1, 1, 1), (1, 1, 1))),
|
|
aux_head_cfg=dict(out_channels=400, loss_weight=0.5))
|
|
|
|
with pytest.raises(AssertionError):
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_cfg_['in_channels'] = list(tpn_cfg_['in_channels'])
|
|
TPN(**tpn_cfg_)
|
|
|
|
with pytest.raises(AssertionError):
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_cfg_['out_channels'] = float(tpn_cfg_['out_channels'])
|
|
TPN(**tpn_cfg_)
|
|
|
|
with pytest.raises(AssertionError):
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_cfg_['downsample_cfg']['downsample_position'] = 'unsupport'
|
|
TPN(**tpn_cfg_)
|
|
|
|
for k in tpn_cfg:
|
|
if not k.endswith('_cfg'):
|
|
continue
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_cfg_[k] = list()
|
|
with pytest.raises(AssertionError):
|
|
TPN(**tpn_cfg_)
|
|
|
|
with pytest.raises(ValueError):
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_cfg_['flow_type'] = 'unsupport'
|
|
TPN(**tpn_cfg_)
|
|
|
|
target_shape = (32, 1)
|
|
target_ = generate_backbone_demo_inputs(target_shape).long().squeeze()
|
|
|
|
x0_shape = (32, 1024, 1, 4, 4)
|
|
x1_shape = (32, 2048, 1, 2, 2)
|
|
x0 = generate_backbone_demo_inputs(x0_shape)
|
|
x1 = generate_backbone_demo_inputs(x1_shape)
|
|
x = [x0, x1]
|
|
|
|
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_cascade = TPN(**tpn_cfg_)
|
|
target = get_label(target_)
|
|
feat, loss_aux = tpn_cascade(x, target)
|
|
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
|
|
assert len(loss_aux) == 1
|
|
|
|
|
|
tpn_cfg_ = copy.deepcopy(tpn_cfg)
|
|
tpn_parallel = TPN(flow_type='parallel', **tpn_cfg_)
|
|
target = get_label(target_)
|
|
feat, loss_aux = tpn_parallel(x, target)
|
|
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
|
|
assert len(loss_aux) == 1
|
|
|
|
|
|
feat, loss_aux = tpn_cascade(x, None)
|
|
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
|
|
assert len(loss_aux) == 0
|
|
|
|
|
|
feat, loss_aux = tpn_parallel(x, None)
|
|
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
|
|
assert len(loss_aux) == 0
|
|
|