|
|
|
import platform
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from mmcv.transforms import to_tensor
|
|
from mmengine.structures import InstanceData
|
|
|
|
from mmaction.registry import MODELS
|
|
from mmaction.structures import ActionDataSample
|
|
from mmaction.testing import get_localizer_cfg
|
|
from mmaction.utils import register_all_modules
|
|
|
|
register_all_modules()
|
|
|
|
|
|
def get_localization_data_sample():
|
|
gt_bbox = np.array([[0.1, 0.3], [0.375, 0.625]])
|
|
data_sample = ActionDataSample()
|
|
instance_data = InstanceData()
|
|
instance_data['gt_bbox'] = to_tensor(gt_bbox)
|
|
data_sample.gt_instances = instance_data
|
|
data_sample.set_metainfo(
|
|
dict(
|
|
video_name='v_test',
|
|
duration_second=100,
|
|
duration_frame=960,
|
|
feature_frame=960))
|
|
return data_sample
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_tem():
|
|
model_cfg = get_localizer_cfg(
|
|
'bsn/bsn_tem_1xb16-400x100-20e_activitynet-feature.py')
|
|
|
|
localizer_tem = MODELS.build(model_cfg.model)
|
|
raw_feature = torch.rand(8, 400, 100)
|
|
|
|
data_samples = [get_localization_data_sample()] * 8
|
|
losses = localizer_tem(raw_feature, data_samples, mode='loss')
|
|
assert isinstance(losses, dict)
|
|
|
|
|
|
with torch.no_grad():
|
|
for one_raw_feature in raw_feature:
|
|
one_raw_feature = one_raw_feature.reshape(1, 400, 100)
|
|
data_samples = [get_localization_data_sample()]
|
|
localizer_tem(one_raw_feature, data_samples, mode='predict')
|
|
|