|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from mmaction.models import TPNHead
|
|
|
|
|
|
def test_tpn_head():
|
|
"""Test loss method, layer construction, attributes and forward function in
|
|
tpn head."""
|
|
tpn_head = TPNHead(num_classes=4, in_channels=2048)
|
|
tpn_head.init_weights()
|
|
|
|
assert hasattr(tpn_head, 'avg_pool2d')
|
|
assert hasattr(tpn_head, 'avg_pool3d')
|
|
assert isinstance(tpn_head.avg_pool3d, nn.AdaptiveAvgPool3d)
|
|
assert tpn_head.avg_pool3d.output_size == (1, 1, 1)
|
|
assert tpn_head.avg_pool2d is None
|
|
|
|
input_shape = (4, 2048, 7, 7)
|
|
feat = torch.rand(input_shape)
|
|
|
|
|
|
num_segs = 2
|
|
cls_scores = tpn_head(feat, num_segs)
|
|
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
|
|
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
|
|
assert cls_scores.shape == torch.Size([2, 4])
|
|
|
|
|
|
input_shape = (2, 2048, 3, 7, 7)
|
|
feat = torch.rand(input_shape)
|
|
cls_scores = tpn_head(feat)
|
|
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
|
|
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
|
|
assert cls_scores.shape == torch.Size([2, 4])
|
|
|