mmaction2 / tests /models /heads /test_tpn_head.py
niobures's picture
mmaction2
d3dbf03 verified
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmaction.models import TPNHead
def test_tpn_head():
"""Test loss method, layer construction, attributes and forward function in
tpn head."""
tpn_head = TPNHead(num_classes=4, in_channels=2048)
tpn_head.init_weights()
assert hasattr(tpn_head, 'avg_pool2d')
assert hasattr(tpn_head, 'avg_pool3d')
assert isinstance(tpn_head.avg_pool3d, nn.AdaptiveAvgPool3d)
assert tpn_head.avg_pool3d.output_size == (1, 1, 1)
assert tpn_head.avg_pool2d is None
input_shape = (4, 2048, 7, 7)
feat = torch.rand(input_shape)
# tpn head inference with num_segs
num_segs = 2
cls_scores = tpn_head(feat, num_segs)
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
assert cls_scores.shape == torch.Size([2, 4])
# tpn head inference with no num_segs
input_shape = (2, 2048, 3, 7, 7)
feat = torch.rand(input_shape)
cls_scores = tpn_head(feat)
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
assert cls_scores.shape == torch.Size([2, 4])