mmaction2 / tests /datasets /test_ava_dataset.py
niobures's picture
mmaction2
d3dbf03 verified
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmengine
import numpy as np
from mmengine.testing import assert_dict_has_keys
from numpy.testing import assert_array_almost_equal, assert_array_equal
from mmaction.datasets import AVADataset, AVAKineticsDataset
from mmaction.utils import register_all_modules
class TestAVADataset:
@classmethod
def setup_class(cls):
cls.data_prefix = osp.normpath(
osp.join(osp.dirname(__file__), './../data', 'ava_dataset'))
cls.label_file = osp.join(cls.data_prefix, 'action_list.txt')
cls.ann_file = osp.join(cls.data_prefix, 'ava_sample.csv')
cls.exclude_file = osp.join(cls.data_prefix,
'ava_excluded_timestamps_sample.csv')
cls.proposal_file = osp.join(cls.data_prefix,
'ava_proposals_sample.pkl')
cls.pipeline = [
dict(type='SampleAVAFrames', clip_len=32, frame_interval=2)
]
cls.proposal = mmengine.load(cls.proposal_file)
def test_ava_dataset(self):
register_all_modules()
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
self.exclude_file,
self.label_file,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
# custom classes
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
self.exclude_file,
label_file=self.label_file,
custom_classes=[17, 79],
num_classes=3,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
# ava_infos = ava_dataset.video_infos
target_labels = np.array([1, 2])
labels = np.zeros([3])
labels[target_labels] = 1.
target_labels = labels[None, ...]
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
None,
self.label_file,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
None,
self.label_file,
test_mode=True,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
del ava_dataset
def test_ava_pipeline(self):
register_all_modules()
target_keys = [
'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info',
'fps', 'filename_tmpl', 'modality', 'start_index',
'timestamp_start', 'timestamp_end', 'proposals', 'scores',
'frame_inds', 'clip_len', 'frame_interval', 'gt_labels',
'gt_bboxes', 'entity_ids'
]
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
self.exclude_file,
self.label_file,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
result = ava_dataset[0]
assert assert_dict_has_keys(result, target_keys)
assert result['filename_tmpl'] == 'img_{:05}.jpg'
assert result['modality'] == 'RGB'
assert result['start_index'] == 1
assert result['timestamp_start'] == 900
assert result['timestamp_end'] == 1800
assert_array_equal(result['proposals'],
np.array([[0.011, 0.157, 0.655, 0.983]]))
assert_array_equal(result['scores'], np.array([0.998163]))
assert result['clip_len'] == 32
assert result['frame_interval'] == 2
assert len(result['frame_inds']) == 32
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
None,
self.label_file,
test_mode=True,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
# Try to get a sample
result = ava_dataset[0]
assert result['filename_tmpl'] == 'img_{:05}.jpg'
assert result['modality'] == 'RGB'
assert result['start_index'] == 1
assert result['timestamp_start'] == 900
assert result['timestamp_end'] == 1800
class TestMultiSportsDataset:
@classmethod
def setup_class(cls):
cls.data_prefix = osp.normpath(
osp.join(
osp.dirname(__file__), './../data', 'multisports_dataset'))
cls.ann_file = osp.join(cls.data_prefix, 'multisports_sample.csv')
cls.proposal_file = osp.join(cls.data_prefix,
'multisports_proposals_sample.pkl')
cls.pipeline = [
dict(type='DecordInit'),
dict(type='SampleAVAFrames', clip_len=32, frame_interval=2),
dict(type='DecordDecode')
]
cls.proposal = mmengine.load(cls.proposal_file)
def test_multisports_dataset(self):
register_all_modules()
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file,
use_frames=False,
timestamp_start=1,
start_index=0,
multilabel=False,
fps=1)
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
test_mode=True,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file,
use_frames=False,
timestamp_start=1,
start_index=0,
multilabel=False,
fps=1)
del ava_dataset
def test_ava_pipeline(self):
register_all_modules()
target_keys = [
'filename', 'video_id', 'timestamp', 'img_key', 'shot_info', 'fps',
'filename_tmpl', 'modality', 'start_index', 'timestamp_start',
'timestamp_end', 'proposals', 'scores', 'frame_inds', 'clip_len',
'frame_interval', 'gt_labels', 'gt_bboxes', 'entity_ids'
]
def mock_video_reader(filename):
from unittest.mock import MagicMock
container = MagicMock()
container.__len__.return_value = 100
container.get_avg_fps.return_value = 24
frame_batch = MagicMock()
frame_batch.asnumpy.return_value = np.zeros((32, 720, 1280, 3))
container.get_batch.return_value = frame_batch
return container
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file,
use_frames=False,
timestamp_start=1,
start_index=0,
multilabel=False,
fps=1)
# Mock a decord Container
ava_dataset.pipeline.transforms[
0]._get_video_reader = mock_video_reader
result = ava_dataset[0]
assert assert_dict_has_keys(result, target_keys)
assert result['modality'] == 'RGB'
assert result['fps'] == 1
assert result['start_index'] == 0
h, w = result['imgs'][0].shape[:2]
scale_factor = np.array([w, h, w, h])
gt_bboxes = np.array([[0.71097612, 0.44144461, 0.79291363, 0.80873633],
[0.19915699, 0.40121613, 0.29834411,
0.79667876]])
assert_array_almost_equal(
result['proposals'], gt_bboxes * scale_factor, decimal=4)
assert_array_almost_equal(result['scores'],
np.array([0.994165, 0.9902001]))
assert result['clip_len'] == 32
assert result['frame_interval'] == 2
assert len(result['frame_inds']) == 32
ava_dataset = AVADataset(
self.ann_file,
self.pipeline,
test_mode=True,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file,
use_frames=False,
timestamp_start=1,
start_index=0,
multilabel=False,
fps=1)
# Mock a decord Container
ava_dataset.pipeline.transforms[
0]._get_video_reader = mock_video_reader
# Try to get a sample
result = ava_dataset[0]
assert result['modality'] == 'RGB'
assert result['fps'] == 1
assert result['start_index'] == 0
class TestAVAKineticsDataset:
@classmethod
def setup_class(cls):
cls.data_prefix = osp.normpath(
osp.join(osp.dirname(__file__), './../data', 'ava_dataset'))
cls.label_file = osp.join(cls.data_prefix, 'action_list.txt')
cls.ann_file = osp.join(cls.data_prefix, 'ava_sample.csv')
cls.exclude_file = osp.join(cls.data_prefix,
'ava_excluded_timestamps_sample.csv')
cls.proposal_file = osp.join(cls.data_prefix,
'ava_proposals_sample.pkl')
cls.pipeline = [
dict(dict(type='SampleAVAFrames', clip_len=32, frame_interval=2))
]
cls.proposal = mmengine.load(cls.proposal_file)
def test_ava_kinetics_dataset(self):
register_all_modules()
ava_dataset = AVAKineticsDataset(
self.ann_file,
self.exclude_file,
self.pipeline,
self.label_file,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
# custom classes
ava_dataset = AVAKineticsDataset(
self.ann_file,
self.exclude_file,
self.pipeline,
label_file=self.label_file,
custom_classes=[17, 79],
num_classes=3,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
# ava_infos = ava_dataset.video_infos
target_labels = np.array([1, 2])
labels = np.zeros([3])
labels[target_labels] = 1.
target_labels = labels[None, ...]
ava_dataset = AVAKineticsDataset(
self.ann_file,
None,
self.pipeline,
self.label_file,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
ava_dataset = AVAKineticsDataset(
self.ann_file,
None,
self.pipeline,
self.label_file,
test_mode=True,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
del ava_dataset
def test_ava_kinetics_pipeline(self):
register_all_modules()
target_keys = [
'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info',
'fps', 'filename_tmpl', 'modality', 'start_index',
'timestamp_start', 'timestamp_end', 'proposals', 'scores',
'frame_inds', 'clip_len', 'frame_interval', 'gt_labels',
'gt_bboxes', 'entity_ids'
]
ava_dataset = AVAKineticsDataset(
self.ann_file,
self.exclude_file,
self.pipeline,
self.label_file,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
result = ava_dataset[0]
assert assert_dict_has_keys(result, target_keys)
assert result['filename_tmpl'] == 'img_{:05}.jpg'
assert result['modality'] == 'RGB'
assert result['start_index'] == 0
assert result['timestamp_start'] == 900
assert result['timestamp_end'] == 1800
assert_array_equal(result['proposals'],
np.array([[0.011, 0.157, 0.655, 0.983]]))
assert_array_equal(result['scores'], np.array([0.998163]))
assert result['clip_len'] == 32
assert result['frame_interval'] == 2
assert len(result['frame_inds']) == 32
ava_dataset = AVAKineticsDataset(
self.ann_file,
None,
self.pipeline,
self.label_file,
test_mode=True,
data_prefix={'img': self.data_prefix},
proposal_file=self.proposal_file)
# Try to get a sample
result = ava_dataset[0]
assert result['filename_tmpl'] == 'img_{:05}.jpg'
assert result['modality'] == 'RGB'
assert result['start_index'] >= 0
assert result['timestamp_start'] > 0
assert result['timestamp_end'] > result['timestamp_start']