|
|
|
import os.path as osp
|
|
|
|
import mmengine
|
|
import numpy as np
|
|
from mmengine.testing import assert_dict_has_keys
|
|
from numpy.testing import assert_array_almost_equal, assert_array_equal
|
|
|
|
from mmaction.datasets import AVADataset, AVAKineticsDataset
|
|
from mmaction.utils import register_all_modules
|
|
|
|
|
|
class TestAVADataset:
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
cls.data_prefix = osp.normpath(
|
|
osp.join(osp.dirname(__file__), './../data', 'ava_dataset'))
|
|
cls.label_file = osp.join(cls.data_prefix, 'action_list.txt')
|
|
cls.ann_file = osp.join(cls.data_prefix, 'ava_sample.csv')
|
|
cls.exclude_file = osp.join(cls.data_prefix,
|
|
'ava_excluded_timestamps_sample.csv')
|
|
cls.proposal_file = osp.join(cls.data_prefix,
|
|
'ava_proposals_sample.pkl')
|
|
cls.pipeline = [
|
|
dict(type='SampleAVAFrames', clip_len=32, frame_interval=2)
|
|
]
|
|
cls.proposal = mmengine.load(cls.proposal_file)
|
|
|
|
def test_ava_dataset(self):
|
|
register_all_modules()
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
self.exclude_file,
|
|
self.label_file,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
self.exclude_file,
|
|
label_file=self.label_file,
|
|
custom_classes=[17, 79],
|
|
num_classes=3,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
target_labels = np.array([1, 2])
|
|
labels = np.zeros([3])
|
|
labels[target_labels] = 1.
|
|
target_labels = labels[None, ...]
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
None,
|
|
self.label_file,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
None,
|
|
self.label_file,
|
|
test_mode=True,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
del ava_dataset
|
|
|
|
def test_ava_pipeline(self):
|
|
register_all_modules()
|
|
target_keys = [
|
|
'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info',
|
|
'fps', 'filename_tmpl', 'modality', 'start_index',
|
|
'timestamp_start', 'timestamp_end', 'proposals', 'scores',
|
|
'frame_inds', 'clip_len', 'frame_interval', 'gt_labels',
|
|
'gt_bboxes', 'entity_ids'
|
|
]
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
self.exclude_file,
|
|
self.label_file,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
result = ava_dataset[0]
|
|
assert assert_dict_has_keys(result, target_keys)
|
|
|
|
assert result['filename_tmpl'] == 'img_{:05}.jpg'
|
|
assert result['modality'] == 'RGB'
|
|
assert result['start_index'] == 1
|
|
assert result['timestamp_start'] == 900
|
|
assert result['timestamp_end'] == 1800
|
|
assert_array_equal(result['proposals'],
|
|
np.array([[0.011, 0.157, 0.655, 0.983]]))
|
|
assert_array_equal(result['scores'], np.array([0.998163]))
|
|
|
|
assert result['clip_len'] == 32
|
|
assert result['frame_interval'] == 2
|
|
assert len(result['frame_inds']) == 32
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
None,
|
|
self.label_file,
|
|
test_mode=True,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
result = ava_dataset[0]
|
|
assert result['filename_tmpl'] == 'img_{:05}.jpg'
|
|
assert result['modality'] == 'RGB'
|
|
assert result['start_index'] == 1
|
|
assert result['timestamp_start'] == 900
|
|
assert result['timestamp_end'] == 1800
|
|
|
|
|
|
class TestMultiSportsDataset:
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
cls.data_prefix = osp.normpath(
|
|
osp.join(
|
|
osp.dirname(__file__), './../data', 'multisports_dataset'))
|
|
cls.ann_file = osp.join(cls.data_prefix, 'multisports_sample.csv')
|
|
cls.proposal_file = osp.join(cls.data_prefix,
|
|
'multisports_proposals_sample.pkl')
|
|
cls.pipeline = [
|
|
dict(type='DecordInit'),
|
|
dict(type='SampleAVAFrames', clip_len=32, frame_interval=2),
|
|
dict(type='DecordDecode')
|
|
]
|
|
cls.proposal = mmengine.load(cls.proposal_file)
|
|
|
|
def test_multisports_dataset(self):
|
|
register_all_modules()
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file,
|
|
use_frames=False,
|
|
timestamp_start=1,
|
|
start_index=0,
|
|
multilabel=False,
|
|
fps=1)
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
test_mode=True,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file,
|
|
use_frames=False,
|
|
timestamp_start=1,
|
|
start_index=0,
|
|
multilabel=False,
|
|
fps=1)
|
|
|
|
del ava_dataset
|
|
|
|
def test_ava_pipeline(self):
|
|
register_all_modules()
|
|
target_keys = [
|
|
'filename', 'video_id', 'timestamp', 'img_key', 'shot_info', 'fps',
|
|
'filename_tmpl', 'modality', 'start_index', 'timestamp_start',
|
|
'timestamp_end', 'proposals', 'scores', 'frame_inds', 'clip_len',
|
|
'frame_interval', 'gt_labels', 'gt_bboxes', 'entity_ids'
|
|
]
|
|
|
|
def mock_video_reader(filename):
|
|
from unittest.mock import MagicMock
|
|
container = MagicMock()
|
|
container.__len__.return_value = 100
|
|
container.get_avg_fps.return_value = 24
|
|
frame_batch = MagicMock()
|
|
frame_batch.asnumpy.return_value = np.zeros((32, 720, 1280, 3))
|
|
container.get_batch.return_value = frame_batch
|
|
return container
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file,
|
|
use_frames=False,
|
|
timestamp_start=1,
|
|
start_index=0,
|
|
multilabel=False,
|
|
fps=1)
|
|
|
|
|
|
ava_dataset.pipeline.transforms[
|
|
0]._get_video_reader = mock_video_reader
|
|
result = ava_dataset[0]
|
|
assert assert_dict_has_keys(result, target_keys)
|
|
|
|
assert result['modality'] == 'RGB'
|
|
assert result['fps'] == 1
|
|
assert result['start_index'] == 0
|
|
|
|
h, w = result['imgs'][0].shape[:2]
|
|
scale_factor = np.array([w, h, w, h])
|
|
gt_bboxes = np.array([[0.71097612, 0.44144461, 0.79291363, 0.80873633],
|
|
[0.19915699, 0.40121613, 0.29834411,
|
|
0.79667876]])
|
|
assert_array_almost_equal(
|
|
result['proposals'], gt_bboxes * scale_factor, decimal=4)
|
|
assert_array_almost_equal(result['scores'],
|
|
np.array([0.994165, 0.9902001]))
|
|
|
|
assert result['clip_len'] == 32
|
|
assert result['frame_interval'] == 2
|
|
assert len(result['frame_inds']) == 32
|
|
|
|
ava_dataset = AVADataset(
|
|
self.ann_file,
|
|
self.pipeline,
|
|
test_mode=True,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file,
|
|
use_frames=False,
|
|
timestamp_start=1,
|
|
start_index=0,
|
|
multilabel=False,
|
|
fps=1)
|
|
|
|
ava_dataset.pipeline.transforms[
|
|
0]._get_video_reader = mock_video_reader
|
|
|
|
result = ava_dataset[0]
|
|
assert result['modality'] == 'RGB'
|
|
assert result['fps'] == 1
|
|
assert result['start_index'] == 0
|
|
|
|
|
|
class TestAVAKineticsDataset:
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
cls.data_prefix = osp.normpath(
|
|
osp.join(osp.dirname(__file__), './../data', 'ava_dataset'))
|
|
cls.label_file = osp.join(cls.data_prefix, 'action_list.txt')
|
|
cls.ann_file = osp.join(cls.data_prefix, 'ava_sample.csv')
|
|
cls.exclude_file = osp.join(cls.data_prefix,
|
|
'ava_excluded_timestamps_sample.csv')
|
|
cls.proposal_file = osp.join(cls.data_prefix,
|
|
'ava_proposals_sample.pkl')
|
|
cls.pipeline = [
|
|
dict(dict(type='SampleAVAFrames', clip_len=32, frame_interval=2))
|
|
]
|
|
cls.proposal = mmengine.load(cls.proposal_file)
|
|
|
|
def test_ava_kinetics_dataset(self):
|
|
register_all_modules()
|
|
ava_dataset = AVAKineticsDataset(
|
|
self.ann_file,
|
|
self.exclude_file,
|
|
self.pipeline,
|
|
self.label_file,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
|
|
ava_dataset = AVAKineticsDataset(
|
|
self.ann_file,
|
|
self.exclude_file,
|
|
self.pipeline,
|
|
label_file=self.label_file,
|
|
custom_classes=[17, 79],
|
|
num_classes=3,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
target_labels = np.array([1, 2])
|
|
labels = np.zeros([3])
|
|
labels[target_labels] = 1.
|
|
target_labels = labels[None, ...]
|
|
|
|
ava_dataset = AVAKineticsDataset(
|
|
self.ann_file,
|
|
None,
|
|
self.pipeline,
|
|
self.label_file,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
ava_dataset = AVAKineticsDataset(
|
|
self.ann_file,
|
|
None,
|
|
self.pipeline,
|
|
self.label_file,
|
|
test_mode=True,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
del ava_dataset
|
|
|
|
def test_ava_kinetics_pipeline(self):
|
|
register_all_modules()
|
|
target_keys = [
|
|
'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info',
|
|
'fps', 'filename_tmpl', 'modality', 'start_index',
|
|
'timestamp_start', 'timestamp_end', 'proposals', 'scores',
|
|
'frame_inds', 'clip_len', 'frame_interval', 'gt_labels',
|
|
'gt_bboxes', 'entity_ids'
|
|
]
|
|
|
|
ava_dataset = AVAKineticsDataset(
|
|
self.ann_file,
|
|
self.exclude_file,
|
|
self.pipeline,
|
|
self.label_file,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
result = ava_dataset[0]
|
|
assert assert_dict_has_keys(result, target_keys)
|
|
|
|
assert result['filename_tmpl'] == 'img_{:05}.jpg'
|
|
assert result['modality'] == 'RGB'
|
|
assert result['start_index'] == 0
|
|
assert result['timestamp_start'] == 900
|
|
assert result['timestamp_end'] == 1800
|
|
assert_array_equal(result['proposals'],
|
|
np.array([[0.011, 0.157, 0.655, 0.983]]))
|
|
assert_array_equal(result['scores'], np.array([0.998163]))
|
|
|
|
assert result['clip_len'] == 32
|
|
assert result['frame_interval'] == 2
|
|
assert len(result['frame_inds']) == 32
|
|
|
|
ava_dataset = AVAKineticsDataset(
|
|
self.ann_file,
|
|
None,
|
|
self.pipeline,
|
|
self.label_file,
|
|
test_mode=True,
|
|
data_prefix={'img': self.data_prefix},
|
|
proposal_file=self.proposal_file)
|
|
|
|
result = ava_dataset[0]
|
|
assert result['filename_tmpl'] == 'img_{:05}.jpg'
|
|
assert result['modality'] == 'RGB'
|
|
assert result['start_index'] >= 0
|
|
assert result['timestamp_start'] > 0
|
|
assert result['timestamp_end'] > result['timestamp_start']
|
|
|