niobures's picture
mmaction2
d3dbf03 verified
#!/usr/bin/env python
import re
import shutil
from collections import defaultdict
from pathlib import Path
from modelindex.load_model_index import load
from modelindex.models.Result import Result
from tabulate import tabulate
from utils import replace_link
MMACT_ROOT = Path(__file__).absolute().parents[2]
PAPERS_ROOT = Path('model_zoo') # Path to save generated paper pages.
GITHUB_PREFIX = 'https://github.com/open-mmlab/mmaction2/blob/main/'
MODELZOO_TEMPLATE = """\
# 模型库统计
在本页面中,我们列举了我们支持的[所有算法](#所有已支持的算法)。你可以点击链接跳转至对应的模型详情页面。
另外,我们还列出了我们提供的所有模型权重文件。你可以使用排序和搜索功能找到需要的模型权重,并使用链接跳转至模型详情页面。
## 所有已支持的算法
* 论文数量:{num_papers}
{type_msg}
* 模型权重文件数量:{num_ckpts}
{paper_msg}
""" # noqa: E501
METRIC_ALIAS = {
'Top 1 Accuracy': 'Top-1 (%)',
'Top 5 Accuracy': 'Top-5 (%)',
}
TASK_MAP = dict(
detection='时空行为检测模型',
localization='时序动作定位模型',
recognition='行为识别模型',
skeleton='基于骨骼点的行为识别模型',
retrieval='视频检索模型',
recognition_audio='基于声音的行为识别模型')
model_index = load(str(MMACT_ROOT / 'model-index.yml'))
def build_collections(model_index):
# add models for collections
col_by_name = {}
for col in model_index.collections:
setattr(col, 'models', [])
col_by_name[col.name] = col
for model in model_index.models:
col = col_by_name[model.in_collection]
col.models.append(model)
setattr(model, 'collection', col)
if model.results is None:
setattr(model, 'tasks', [])
else:
setattr(model, 'tasks', [result.task for result in model.results])
build_collections(model_index)
# save a map from model name to title in README
model2title = dict()
def count_papers(collections):
total_num_ckpts = 0
type_count = defaultdict(int)
paper_msgs = []
for collection in collections:
with open(MMACT_ROOT / collection.readme) as f:
readme = f.read()
ckpts = set(x.lower().strip()
for x in re.findall(r'\[ckpt.*\]\((https?.*)\)', readme))
total_num_ckpts += len(ckpts)
title = collection.paper['Title']
papertype = collection.data.get('type', 'Algorithm')
type_count[papertype] += 1
readme_title = re.search(r'^#\s+.+', readme)
readme = Path(collection.filepath).parents[1].with_suffix('.md').name
model = Path(collection.filepath).parent.name
model2title[model] = readme_title.group()[2:].replace(' ', '-')
paper_msgs.append(f'\t- [{papertype}] [{title}]({PAPERS_ROOT / readme}'
f'#{model2title[model]}) ({len(ckpts)} ckpts)')
type_msg = '\n'.join(
[f'\t- {type_}: {count}' for type_, count in type_count.items()])
paper_msg = '\n'.join(paper_msgs)
modelzoo = MODELZOO_TEMPLATE.format(
num_papers=len(collections),
num_ckpts=total_num_ckpts,
type_msg=type_msg,
paper_msg=paper_msg,
)
with open('modelzoo_statistics.md', 'w') as f:
f.write(modelzoo)
count_papers(model_index.collections)
def generate_paper_page(collection):
# Write a copy of README
with open(MMACT_ROOT / collection.readme) as f:
content = f.read()
readme_path = Path(collection.filepath)
copy = PAPERS_ROOT / readme_path.parents[1].with_suffix('.md').name
if not copy.exists():
with open(copy, 'w') as copy_file:
task = readme_path.parents[1].name
head_content = f'# {TASK_MAP[task]}\n'
copy_file.write(head_content)
def lower_heading(match):
return '#' + match.group()
content = replace_link(r'\[([^\]]+)\]\(([^)]+)\)', '[{}]({})', content,
Path(collection.readme))
content = replace_link(r'\[([^\]]+)\]: (.*)', '[{}]: {}', content,
Path(collection.readme))
content = re.sub(r'^#+\s+.+', lower_heading, content, flags=re.M)
with open(copy, 'a') as copy_file:
copy_file.write(content)
if PAPERS_ROOT.exists():
shutil.rmtree(PAPERS_ROOT)
PAPERS_ROOT.mkdir(exist_ok=True)
for collection in model_index.collections:
generate_paper_page(collection)
def scatter_results(models):
model_result_pairs = []
for model in models:
if model.results is None:
result = Result(task=None, dataset=None, metrics={})
model_result_pairs.append((model, result))
else:
for result in model.results:
model_result_pairs.append((model, result))
return model_result_pairs
def generate_summary_table(task, model_result_pairs, title=None):
metrics = set()
for model, result in model_result_pairs:
if result.task == task:
metrics = metrics.union(result.metrics.keys())
metrics = sorted(list(metrics))
rows = []
def convert2float(number):
units = {'M': 1e6, 'G': 1e9, 'T': 1e12}
if isinstance(number, str):
num = float(number.rstrip('MGT'))
number = num * units[number[-1]]
return number
for model, result in model_result_pairs:
if result.task != task:
continue
name = model.name
if model.metadata.parameters is not None:
params = convert2float(model.metadata.parameters)
params = f'{params / 1e6:.2f}' # Params
else:
params = None
if model.metadata.flops is not None:
flops = convert2float(model.metadata.flops)
flops = f'{flops / 1e9:.2f}' # Flops
else:
flops = None
readme = Path(
model.collection.filepath).parents[1].with_suffix('.md').name
model = Path(model.collection.filepath).parent.name
page = f'[链接]({PAPERS_ROOT / readme}#{model2title[model]})'
model_metrics = []
for metric in metrics:
model_metrics.append(str(result.metrics.get(metric, '')))
rows.append([name, params, flops, *model_metrics, page])
with open('modelzoo_statistics.md', 'a') as f:
if title is not None:
f.write(f'\n{title}')
f.write("""\n```{table}\n:class: model-summary\n""")
header = [
'模型',
'参数量 (M)',
'Flops (G)',
*[METRIC_ALIAS.get(metric, metric) for metric in metrics],
'Readme',
]
table_cfg = dict(
tablefmt='pipe',
floatfmt='.2f',
numalign='right',
stralign='center')
f.write(tabulate(rows, header, **table_cfg))
f.write('\n```\n')
def generate_dataset_wise_table(task, model_result_pairs, title=None):
dataset_rows = defaultdict(list)
for model, result in model_result_pairs:
if result.task == task:
dataset_rows[result.dataset].append((model, result))
if title is not None:
with open('modelzoo_statistics.md', 'a') as f:
f.write(f'\n{title}')
for dataset, pairs in dataset_rows.items():
generate_summary_table(task, pairs, title=f'### {dataset}')
model_result_pairs = scatter_results(model_index.models)
# Generate Action Recognition Summary
generate_dataset_wise_table(
task='Action Recognition',
model_result_pairs=model_result_pairs,
title='## 行为识别',
)
# Generate Action Detection Summary
generate_dataset_wise_table(
task='Action Detection',
model_result_pairs=model_result_pairs,
title='## 时空行为检测',
)
# Generate Skeleton-based Action Recognition Summary
generate_dataset_wise_table(
task='Skeleton-based Action Recognition',
model_result_pairs=model_result_pairs,
title='## 骨骼点行为识别',
)
# Generate Video Retrieval Summary
generate_dataset_wise_table(
task='Video Retrieval',
model_result_pairs=model_result_pairs,
title='## 视频检索',
)
# Generate Temporal Action Localization Summary
generate_dataset_wise_table(
task='Temporal Action Localization',
model_result_pairs=model_result_pairs,
title='## 时序动作定位',
)