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Abstract. Most modern video recognition models are designed to op-
erate on short video clips (e.g., 5-10s in length). Thus, it is challenging
to apply such models to long movie understanding tasks, which typi-
cally require sophisticated long-range temporal reasoning. The recently
introduced video transformers partially address this issue by using long-
range temporal self-attention. However, due to the quadratic cost of self-
attention, such models are often costly and impractical to use. Instead,
we propose ViS4mer, an efficient long-range video model that combines
the strengths of self-attention and the recently introduced structured
state-space sequence (S4) layer. Our model uses a standard Transformer
encoder for short-range spatiotemporal feature extraction, and a multi-
scale temporal S4 decoder for subsequent long-range temporal reason-
ing. By progressively reducing the spatiotemporal feature resolution and
channel dimension at each decoder layer, ViS4mer learns complex long-
range spatiotemporal dependencies in a video. Furthermore, ViS4mer is
2.63× faster and requires 8× less GPU memory than the corresponding
pure self-attention-based model. Additionally, ViS4mer achieves state-of-
the-art results in 6 out of 9 long-form movie video classification tasks on
the Long Video Understanding (LVU) benchmark. Furthermore, we show
that our approach successfully generalizes to other domains, achieving
competitive results on the Breakfast and the COIN procedural activity
datasets. The code is publicly available. 1

1 Introduction

Suppose we ask someone to describe the relationship between the characters from
the ‘Interstellar’ movie illustrated in Figure 1. It might be difficult for them to
do so just by looking at a short video clip of several seconds. However, this is
a much easier task if a person watches the whole movie. Thus, in this work, we
pose the question of whether we can develop a computer vision model that can
leverage long-range temporal cues to answer complex questions such as ‘What
is the genre of the movie?’, ‘What is the relationship among the characters?’,
‘Who is the director of the movie?’, etc.

The majority of modern video recognition models [2,5,8,14–16,25,36,39,43,
48] are unfortunately not equipped to solve these tasks as they are designed for
short-range videos (e.g., 5-10 seconds in duration). Furthermore, extending these

1 https://github.com/md-mohaiminul/ViS4mer
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Fig. 1: Most traditional video models are designed for local prediction tasks (e.g.,
atomic action recognition, object detection, etc.) in short video clips (e.g., 5 seconds in
length). In contrast, we aim to understand complex video understanding tasks in long
movie videos (e.g., 200 seconds long), such as classifying the relationships among movie
characters, predicting the writer of the story, categorizing the genre of the movie, etc.

models to the long-range video setting by stacking more input video frames is
impractical due to excessive computational cost and GPU memory consumption.

Recently, several Transformer models [5,53] have been shown to perform well
on long-range video understanding tasks. However, due to the quadratic cost of
standard self-attention, these models are either very computationally costly [5],
or they have to operate on pre-extracted CNN features [53], which discard fine-
grained spatiotemporal information, thus, limiting the expressivity of the final
video model. The latter characteristic is particularly important for long-range
movie clip analysis, since fine-grained spatiotemporal cues may be indicative of
the relationships between different movie characters, the genre of a movie, etc.

To address the efficiency-related issues of standard self-attention, recent work
in Natural Language Processing (NLP) has proposed a structured state-space
sequence model (S4) [19] for long-range sequence analysis. Unlike self-attention,
the S4 layer has linear memory and computation cost with respect to the input
length. As a result, it can handle much longer input sequences.

Combining the strengths of the self-attention and the S4 layer, we propose
ViS4mer, a long-range Video classification model composed of a standard trans-
former encoder and a multi-scale temporal S4 decoder. The transformer encoder
is used for spatial short-range video feature extraction whereas the S4 decoder
performs long-range temporal reasoning, which is necessary for complex movie
clip classification tasks. We build our temporal S4 decoder using a multi-scale
architecture progressively reducing the number of tokens and the channel dimen-
sion with every layer. This allows our model to learn hierarchical spatiotemporal
video representation while also reducing the computational cost associated with
operating on a large number of video tokens.

We validate ViS4mer on the recently introduced Long Video Understanding
(LVU) benchmark [53], which consists of nine diverse movie understanding tasks.
We show that ViS4mer outperforms previous approaches in 6 out of 9 long-range
video classification tasks. Moreover, compared to its self-attention counterpart,
ViS4mer is 2.63× faster and requires 8× less GPU memory. Lastly, ViS4mer
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generalizes to other domains, achieving competitive results on the Breakfast [30]
and COIN [45] long-range procedural activity datasets.

2 Related Work

Modeling Long Sequences. Long sequence modeling is a fundamental task
in Natural Language Processing (NLP). Previously, Bahdanau et al. [3] proposed
a recurrent attention scheme for machine translation. Improving upon this work,
Vaswani at el. [49] introduced a self-attention operation for the same machine
translation task. Subsequently, a plethora of transformer-based architectures has
been proposed for various NLP tasks [6, 10, 12, 34, 41, 55]. However, one major
drawback of the transformer architecture is the quadratic complexity of stan-
dard self-attention. Various efficient self-attention schemes have been proposed
for reducing the computation cost when modeling long sequences [9, 26, 29, 56].
Most relevant to our work, is the method of Gu at el. [17, 19, 20] that proposes
an efficient structured state-space sequence (S4) layer for long sequence mod-
eling. Inspired by this work, in this paper, we design a video architecture that
incorporates the ideas from [19,20] for long-range movie understanding tasks.

Video Recognition. Most existing video recognition methods are built us-
ing 2D and 3D Convolutional Neural Networks [8,15,16,25,31,40,43,48,52,58,60].
Due to the local nature of 2D and 3D convolutions, most of these models typically
operate on short video clips of a few seconds. Inspired by the success of Trans-
former models in natural language processing (NLP), recently the transformer-
based models have been successfully used for video recognition tasks [2, 5, 14,
36,39]. However, due to the quadratic cost of the self-attention operation, these
models are very computationally costly and, thus, only applied to short-range
video segments. Our work aims to address this issue by proposing a novel efficient
ViS4mer model for long movie clip understanding tasks.

Understanding Long-form Movie Videos. Movie understanding is a
popular area of video understanding with many prior methods designed for
movie-based tasks. Tapaswi et al. [47] introduce a movie question answering
dataset. Bain et al. [4] and Zellers at al. [57] propose text-to-video retrieval
and question answering benchmarks. However, these multi-modal benchmarks
are often biased towards the language domain and are not ideal for evaluating
video-only models. Several prior works introduced movie understanding datasets
[22, 50, 54], which are not publicly accessible for copyright issues. Recently, Wu
et al. [53] introduced a Long-form Video Understanding (LVU) benchmark that
uses publicly available MovieClips [1]. The proposed LVU benchmark contains
nine diverse tasks covering a wide range of aspects of long-form video under-
standing, which makes it suitable for evaluating our work as well. The current
state-of-the-art Object Transformer method [53] applied on this benchmark, uses
a Transformer architecture, and a variety of external modules (e.g., short-term
video feature extractor [16,51], object detection, and tracking modules [21,32,42],
and self-supervised pretraining) Instead, in this work, we propose ViS4mer, a
simple and efficient long-range video recognition model.
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Table 1: Theoretical runtime and memory requirement of state-space and self-attention
operations w.r.t sequence length (L), batch size (B), and hidden dimension (H). Tildes
denote log factors [19]. The runtime and memory cost of the state-space layer is linear
w.r.t the input sequence length as opposed to the quadratic cost of self-attention.

Self-attention State-space

Parameters H2 H2

Memory B(L2 + HL) BLH

Training B(L2H + LH2) BH(H̃ + L̃) + BL̃H
Inference L2H + LH2 H2

3 Background: Structured State-Space Sequence Model

Before describing our method, we first review some background information on
Structured State-Spaces Sequence layers [19], which is one of the key components
of our ViS4mer architecture. We start from the fundamental State-Space Model
(SSM), which is defined by the simple equation (1). It maps a 1-dimensional
input signal u(t) to an N-dimensional latent space x(t), then projects the hidden
state x(t) to a 1-dimensional output signal y(t).

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

Here, A, B, C, and D are parameters learned using gradient descent. Unfor-
tunately, the standard implementation of SSM can be very costly because com-
puting the hidden state requires L successive multiplications with the matrix A.
This results in O(N2L) operations and O(NL) space for state dimension N and
sequence length L. Moreover, this operation suffers from the vanishing/exploding
gradients problem. To address this issue, the recent work [19] leverages HiPPO
theory [18], which requires the A matrix to be defined as:

Ank =


(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

(2)

This provides theoretical guarantees allowing SSMs to capture long-range
dependences in the sequential data. Building on this work, the method in [19]
develops a structured state-space sequence (S4) layer, which significantly reduces
the computation cost of a basic SSM.

In Table 1, we compare the theoretical time and space complexity of the
self-attention and structured state-space sequence layers. We observe that self-
attention has quadratic complexity w.r.t input sequence length L for training
time, inference time, and memory requirement. In contrast, the state-space op-
eration has linear time and space dependency w.r.t the input sequence length L.
We refer the reader to the original paper [19] for further details.
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Fig. 2: Overview of the ViS4mer model. First, we split the video frames into fixed-
size patches and use a short-range transformer encoder to extract contextual patch-
level features for each video frame. Next, we feed the resulting spatiotemporal patch
tokens from the whole video to a novel multi-scale temporal S4 decoder for modeling
long-range temporal interactions in movie clips. Each S4 decoder block reduces the
spatiotemporal resolution and the channel dimension using a Pooling and an MLP
layer for learning multi-scale features. Afterward, the outputs from the S4 decoder are
aggregated using global average pooling (GAP), and fed into the classification layer for
the final downstream task prediction.

4 The ViS4mer Model

Our goal is to design a model for long-range movie clip analysis. To this end, we
propose ViS4mer, a long-range video recognition model comprised of a trans-
former encoder and a multi-scale temporal S4 decoder. Following Vision Trans-
former [13], we first divide input video frames into smaller patches. We then ap-
ply a standard transformer encoder to extract fine-grained patch-level features
from each video frame. Afterward, we use our proposed multi-scale temporal S4
decoder for long-range temporal reasoning over the patch-level features. Since
the decoder has access to fine-grained spatiotemporal video patch information, it
can effectively recognize the complex global properties of a long-range video. In
Figure 2, we illustrate the overall architecture of our proposed ViS4mer model.
Below, we also discuss each of these components in more detail.

4.1 Transformer Encoder

Let us assume, we have a video V ∈ RT×H×W×3 of T frames denoted by
(f1, ..., fi, ..., fT ). Each frame has a spatial resolution of H ×W × 3, where H is
the height, and W is the width of the frame. The transformer encoder E is then
applied to each frame independently.
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Following ViT [13], we divide each frame into N non-overlapping patches of
size P × P , where N = HW/P . Then a linear layer is applied to project each
patch to a latent dimension of D, and a positional embedding E ∈ RN×D is
added to each patch embedding. We can think of these embeddings as a sequence
of N tokens (z1, ..., zi, ..., zN ), where zi ∈ RD.

The resulting sequence is passed through the transformer encoder E which is
a stack of L transformer blocks. Each transformer block contains a multi-headed
attention (MHA) and a multi-layer perceptron (MLP) block. Layer normaliza-
tion (LN) is applied before each block, and a skip connection layer is added after
each block. These operations can be expressed as:

z′ = MHA(LN(zin)) + zin

zout = MLP(LN(z′)) + z′ (3)

The spatiotemporal token outputs of the transformer encoder can then be
denoted as (h1, ...,hi, ...,hT ), where hi = E (fi) ∈ RH′×W ′×D, H ′ = H/P , W ′ =
W/P . All of these outputs are stacked into a single matrix X ∈ RT×H′×W ′×D.

4.2 Multi-scale Temporal S4 Decoder

Next, we describe our framework for modeling complex long-range temporal
dependencies among the spatiotemporal tokens produced by the transformer
encoder. One obvious choice is to use another transformer model to process such
a sequence of tokens. However, this can be challenging due to (i) a large number
of spatiotemporal tokens and (ii) the quadratic complexity of the self-attention
operation. To illustrate this point, we note that processing a video of 60 frames
of 224 × 224 spatial resolution using a patch size of 16 × 16 yields a total of
14 × 14 × 60 = 11, 760 output tokens. Using a standard self-attention operator
on such a large number of tokens requires ∼138 million pairwise comparisons
which is extremely costly. Another solution would be to only consider CLS token
outputs for each frame. However, doing so removes fine-grained spatiotemporal
information, thus, degrading the performance of long-range movie understanding
tasks (as shown in our experimental evaluation).

To overcome this challenge we design a temporal multi-scale S4 decoder ar-
chitecture for complex long-range reasoning. Instead of using self-attention, our
decoder model utilizes the recently introduced S4 layer (described in Section 3).
Since the S4 layer has a linear computation and memory dependency with re-
spect to the sequence length, this significantly reduces the computational cost
of processing such long sequences.

To effectively adapt the S4 layer to the visual domain, we design a multi-
scale S4 decoder architecture. Our temporal multi-scale S4 decoder consists of
multiple blocks where each block operates on different spatial resolution and
channel dimensions. Starting from a high spatial resolution and high channel
dimension, the proposed model gradually decreases spatiotemporal resolution
and channel dimension at each block. Our multi-scale architecture is inspired
by several successful multi-scale models in the visual domain such as Feature
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Pyramid Networks [32], and Swin transformer [35]. Because of this multi-scale
strategy, different blocks can effectively learn features at different scales, which
helps the model to learn complex spatiotemporal dependencies over long videos.
Furthermore, operating on shorter input sequences of smaller channel dimensions
in the deeper blocks helps us to reduce overfitting on a relatively small LVU
benchmark. Overall, as will be shown in our experimental section, in addition
to producing better performance, our multi-scale strategy further reduces the
computational cost and GPU memory requirements.

Figure 2 (right) shows the architecture of the multi-scale temporal S4 de-
coder. The decoder network D consists of N blocks, which are defined below:

xs4 = S4(LN(xin))

xmlp = MLP(Pooling(xs4))

xskip = Linear(Pooling(xin))

xout = xmlp + xskip

(4)

S4 Layer. We flatten the input tensor X to a sequence of L vectors xin =
(x1, ...,xi, ...,xL), where L = T × H ′ × W ′, and xi ∈ RD. We then pass this
sequence to the S4 layer, which outputs the feature tensor xs4 ∈ RL×D.

Spatiotemporal Resolution Reduction. We reduce the space-time reso-
lution of our input tensor by a factor of sT × sH × sW using a max-pooling layer
where sT×sH×sW is the stride along each axis of the input tensor. The resulting
tensor has dimensionality of T ×H ×W . This allows our model to learn multi-
scale spatiotemporal representations while also reducing the computational cost
of operating on long sequences.

Channel Reduction. After the pooling layer, we apply an MLP, which
reduces the channel dimension of the input tensor. In addition to decreasing the
computational cost, this also reduces overfitting on the LVU benchmark.

Skip Connections. We use skip connections from the input tensor to the
final output of a decoder block. Due to the mismatch of feature dimensionalities,
we apply an additional pooling layer to the input tensor. Furthermore, to handle
the channel dimension mismatch, we use an additional linear layer.

4.3 Loss Functions

Following [53], we use a cross-entropy loss for the classification tasks, and the
mean squared error (MSE) for the regressions tasks.

Lce(FC(θ)) = − 1

B

B∑
i=1

K∑
j=1

yij log(FC(θ;x
i)j) (5)

Lmse(FR(θ)) = − 1

B

B∑
i=1

(yi −FR(θ;xi))2 (6)
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Here, FC(θ) and FR(θ) are our classification and regression models respec-
tively, B is the batch size, K is the number of classes (for the classification task),
y is the label, x is the input, and θ are the learnable model parameters.

4.4 Implementation Details

We resize each video frame to the spatial resolution of 224×224 and use a patch
size of 16× 16. For the transformer encoder, we use a 24-block transformer with
hidden dimension 1024 pretrained on ImageNet [11]. For our multi-scale temporal
S4 decoder, we use a 3-block architecture. Each block has a pooling layer with
a kernel of 1× 2× 2, stride of 1× 2× 2, and padding of 1× 1× 1. As discussed
above, each block also has an MLP layer, which reduces the feature dimension
by a factor of 2×. For all of our experiments, we use Adam optimizer [28] with
a learning rate of 10−3, and with a weight decay of 0.01. We train our models
using NVIDIA RTX A6000 GPU with a batch size of 16.

5 Experiments

We evaluate ViS4mer on the recently proposed Long-form Video Understanding
(LVU) benchmark [53] which contains nine diverse tasks related to long-form
movie understanding. Moreover, we also perform thorough ablation studies (i)
comparing our S4-based model to an equivalent self-attention baseline, (ii) study-
ing the efficiency of ViS4mer, (iii) comparing our method with other efficient
attention schemes, (iv) analyzing the design choices of our model, (v) validating
the robustness to different short-range encoders, and (vi) lastly investigating our
model’s long-range modeling capability. Additionally, to demonstrate the gener-
alization of our approach, we also validate ViS4mer on two long-range procedural
activity datasets, COIN [45,46] and Breakfast [30].

5.1 Main Results on the LVU benchmark

The long-form video understanding benchmark (LVU) [53] is constructed us-
ing the publicly available MovieClip dataset [1], which contains ∼30K videos
from ∼3K movies. Each video is typically one to three minutes long. The bench-
mark contains nine tasks covering a wide range of long-form video understanding
tasks. These 9 tasks fall into three main categories: (i) content understanding,
which consists of (‘relationship’, ‘speaking style’, ‘scene/place’ ) prediction, (ii)
metadata prediction, which includes (‘director’, ‘genre’, ‘writer’, and ‘movie
release year’ ) classification, and (iii) user engagement, which requires predict-
ing (‘YouTube like ratio’, and ‘YouTube popularity’ ).

The content understanding and the metadata prediction tasks are evaluated
using the standard top-1 accuracy metric, whereas the user engagement predic-
tion tasks are evaluated using mean-squared error (MSE). Following [53], we use
standard splits and train our model using video clips of 60 seconds.
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Table 2: Comparison to prior works on the LVU dataset. Compared to previous long-
range video models (VideoBERT, and Object Transformer), ViS4mer achieves signif-
icantly better accuracy in most tasks. Furthermore, ViS4mer also outperforms our
implemented Long Sequence Transformer baseline, which uses the same design as our
model, except for the S4 layers, which are replaced with the self-attention layers.

Sequence Content (↑) Metadata (↑) User (↓)
Model Relation Speak Scene Director Genre Writer Year Like Views

SlowFast+NL [16,51] non-local 52.40 35.80 54.70 44.90 53.00 36.30 52.50 0.38 3.77
VideoBERT [44] self-attention 52.80 37.90 54.90 47.30 51.90 38.50 36.10 0.32 4.46
Obj. Transformer [53] self-attention 53.10 39.40 56.90 51.20 54.60 34.50 39.10 0.23 3.55

Long Seq. Transformer self-attention 52.38 37.31 62.79 56.07 52.70 42.26 39.16 0.31 3.83
ViS4mer state-space 57.14 40.79 67.44 62.61 54.71 48.8 44.75 0.26 3.63

We compare our proposed ViS4mer model with the previous methods val-
idated on this benchmark. In particular, we use the same baselines as in [53].
Additionally, we implement our own Long Sequence Transformer (LST) base-
line, which follows exactly the same design as our ViS4mer model except for the
S4 layers, which are replaced with standard self-attention layers.

We present our results in Table 2 where we show that ViS4mer achieves
state-of-the-art performance in most tasks. Specifically, ViS4mer outperforms
both long-range video models (VideoBERT, and Object Transformer) in the
content understanding and metadata prediction tasks by a significant margin
and achieves comparable performance in the user engagement tasks. Further-
more, we also demonstrate that ViS4mer outperforms our Long Sequence Trans-
former baseline, which suggests the superiority of S4 layers over the standard
self-attention layers for these tasks.

5.2 Ablation Studies

Detailed Comparison with Self-attention. Since most previous methods
predominantly use self-attention for long sequence video modeling, we compare
our state-space (i.e., S4) based design with the equivalent self-attention-based
approaches. For these comparisons, we use the same Long Sequence Transformer
baseline (described in the previous subsection), which replaces all state-space
layers of the ViS4mer model with the self-attention layers.

Specifically, we compare the performance of ViS4mer and Long Sequence
Transformer by varying the number of input tokens for both models. We use
video clips of 60 seconds and a frame per second rate of 1. We vary the number
of input tokens to 60, 1500, 2940, and 11760 by applying spatial max-pooling
with a varying stride individually on each frame before feeding the tokens into
the model. Note that the 60 token baseline corresponds to a model that operates
only on the frame-level CLS tokens.

We present our results for this study in Figure 3, where we plot (a) the av-
erage accuracy of three content understanding tasks, (b) the average accuracy
of four metadata prediction tasks, and (c) the average MSE of two user engage-
ment prediction tasks as a function of the number of input tokens. Based on
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Fig. 3: We compare the performance of our ViS4mer and Long Sequence Transformer
(LST) as a function of the number of input tokens on (a) the content understanding
(using top-1 acc.), (b) the metadata prediction (using top-1 acc.), and (c) the user
engagement prediction (using MSE) tasks. ViS4mer performs better for all number of
tokens in all tasks.

Table 3: The GPU memory requirements (in GB) and the training speed (sam-
ple/seconds) of our state-space-based ViS4mer and the self-attention-based Long Se-
quence Transformer (LST). We compare both of these approaches while varying the
number of input tokens. As we increase the number of tokens, the GPU memory and
computation requirement of self-attention grows more rapidly for the LST baseline
than for ViS4mer. Overall, ViS4mer requires 8× less GPU memory and is 2.63× times
faster than the self-attention baseline while operating on very long video sequences
(i.e., 11, 760 spatiotemporal tokens).

# of Tokens Samples/s (↑) GPU Memory (GB)(↓)
ViS4mer LST ViS4mer LST

60 12.46 8.85 2.23 2.45
1,500 8.27 6.31 3.61 3.99
2,940 6.25 4.47 3.67 5.43
11,760 4.95 1.88 5.15 41.38

these results, we observe that increasing the number of input tokens increases
the performance of both ViS4mer and Long Sequence Transformer. We also note
that ViS4mer achieves better performance than LST in all cases, which suggests
that the state-space layers are superior to self-attention layers in this setting.
Furthermore, our results indicate that the performance gap between the two
methods increases as we increase the number of tokens. This observation sug-
gests that the proposed ViS4mer architecture is more effective at incorporating
information from very long video sequences.

Computational Cost Analysis. Additionally, in Table 3, we investigate
the GPU memory requirements (in GB) and the training speed (sample/second)
of ViS4mer and Long Sequence Transformer while varying the number of in-
put tokens in the same way as was done in our previous analysis. These results
indicate that in addition to being more accurate, ViS4mer is also significantly
more memory-efficient and faster in all settings. It is worth mentioning, that
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Table 4: Comparison with other efficient attention schemes. ViS4mer outperforms
Performer [9] and Orthoformer [39] on the LVU benchmark while requiring similar
memory and computation cost.

Content (↑) Metadata (↑) User (↓)
Relation Speak Scene Director Genre Writer Year Like Views Sam./s (↑) Mem (↓)

Self-attention 52.38 37.31 62.79 56.07 52.70 42.26 39.16 0.31 3.83 1.88 41.38
Performer 50.00 38.80 60.46 58.87 49.45 48.21 41.25 0.31 3.93 4.67 5.93
Orthoformer 50.00 39.30 66.27 55.14 55.79 47.02 43.35 0.29 3.86 4.85 5.56
State-space 57.14 40.79 67.44 62.61 54.71 48.8 44.75 0.26 3.63 4.95 5.15

when increasing the number of tokens to a large number (11, 760) the mem-
ory requirement of the self-attention-based model grows very rapidly, requiring
41.38GB of GPU memory. In contrast, ViS4mer is much more memory-efficient,
requiring only 5.15GB of GPU memory. Moreover, based on these results, we
observe that ViS4mer is 2.63× faster compared to Long Sequence Transformer
when operating on sequences consisting of 11, 760 spatiotemporal tokens.

Comparison with Other Efficient Attention Schemes. We also com-
pare our method with other efficient self-attention schemes (e.g., Performer [9]
and Orthoformer [39]) that do not require quadratic complexity with respect to
the input length. We construct such models by replacing the state-space layers
of the ViS4mer with the corresponding efficient self-attention layers and keeping
all other settings the same as for our model. Table 4 shows the results of these
comparisons. We can observe that ViS4mer achieves the best performance in
most LVU benchmark tasks while requiring similar memory and computation
cost as other efficient attention schemes (e.g., Performer and Orthoformer).

Table 5: Ablation on the ViS4mer architecture design. We observe that both (i) multi-
scale feature learning (enabled by pooling) and (ii) progressive channel dimension re-
duction are critical for the best performance on the LVU benchmark. ViS4mer achieves
substantially better performance compared to the vanilla S4 model while being 1.41×
faster and requiring 2.2× less GPU memory.

Pooling Scaling Content(↑) Metadata(↑) User(↓) Samples/s(↑) Memory(GB)(↓)

✗ ✗ 49.53 49.26 2.30 2.25 7.27
✓ ✗ 48.96 49.77 2.10 3.98 5.96
✗ ✓ 52.25 48.79 2.09 4.12 5.95
✓ ✓ 55.12 52.72 1.94 4.95 5.15

ViS4mer Architecture Analysis. In Table 5, we analyze the significance
of (i) multi-scale feature learning, which is enabled by the pooling layers, and
(ii) the channel dimensionality reduction, which improves efficiency and reduces
overfitting. These results indicate that both of these architecture design choices
contribute not only to better performance on the LVU benchmark but also to
the higher efficiency of ViS4mer. Specifically, compared to the vanilla S4 model,
our final ViS4mer achieves 5.5%, and 3.5% better performance on the content



12 Md Mohaiminul Islam, Gedas Bertasius

Table 6: Short-range encoder ablation. ViS4mer outperforms Object Transformer in 6
out of the 9 tasks while using the same short-range model (SlowFast [16]). Moreover,
we observe that using ViT as our short-range encoder produced the best results in 6
out of 9 LVU benchmark tasks.

Content (↑) Metadata (↑) User (↓)
Model Encoder Relation Speak Scene Director Genre Writer Year Like Views

Obj. Trans. [53]
SlowFast [16] 53.10 39.40 56.90 51.20 54.60 34.50 39.10 0.23 3.55
ViT [13] 54.76 33.17 52.94 47.66 52.74 36.30 37.76 0.30 3.68

ViS4mer

SlowFast [16] 59.52 40.29 60.46 53.27 52.74 42.85 39.86 0.27 3.70
ConvNeXt [37] 59.52 38.30 62.79 57.00 54.40 45.83 42.65 0.30 3.74
Swin [35] 54.76 37.31 61.62 56.07 49.45 47.61 39.86 0.31 3.56
ViT [13] 57.14 40.79 67.44 62.61 54.71 48.8 44.75 0.26 3.63
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Fig. 4: Performance on the (a) Writer Prediction, (b) Year Prediction, and (c) Speak-
ing Style Prediction tasks as a function of the input video duration. Based on these
results, we observe that the Long Sequence Transformer (LST) performs better on very
short clips. However, ViS4mer excels on much longer clips indicating its effectiveness
at modeling long video sequences.

understanding and metadata prediction tasks respectively, and 0.36 lower MSE
on the user engagement tasks. Furthermore, ViS4mer has 2.2× faster run-time
and 1.41× smaller GPU memory usage than the vanilla S4 model.

Short-range Encoder Ablation. To validate the robustness of our model,
we also conduct experiments with different short-range encoder models. Specifi-
cally, we experiment with four popular short-range models, which includes both
CNN and Transformer-based encoders: (i) SlowFast [16], which was used by the
previous Object Transformer method [53], (ii) ConvNeXt [37], (iii) Swin Trans-
former [35], and (iv) ViT [13]. We report our results of this analysis in Table 6.
Based on these results, we first note that ViS4mer outperforms Object Trans-
former in 6 tasks while using SlowFast [16], and 9 tasks while using ViT [13].
Furthermore, we observe that using ViT as our short-range encoder leads to the
best performance in 6 out of 9 LVU benchmark tasks.

Temporal Extent Ablation. Additionally, we compare the long-range tem-
poral reasoning abilities of our state-space-based ViS4mer and an equivalent
self-attention-based Long Sequence Transformer. In particular, we train both
of these models using video inputs spanning 1, 20, 40, and 60 seconds. In Fig-
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Table 7: Evaluation on two long-range procedural activity classification datasets, i.e.,
COIN [45, 46], and Breakfast [30]. ViS4mer achieves comparable performance as the
best performing, Distant Supervision [33] framework, while using significantly less pre-
training data. This indicates ViS4mer’s ability to generalize to other domains.

(a) Long-range procedural activity classification on the Breakfast [30] dataset.

Model Pretraining Dataset Pretraining Samples Accuracy(↑)

VideoGraph [24] Kinetics-400 306K 69.50
Timeception [23] Kinetics-400 306K 71.30
GHRM [59] Kinetics-400 306K 75.50
Distant Supervision [33] HowTo100M 136M 89.90
ViS4mer Kinetics-600 495K 88.17

(b) Long-range procedural activity classification on the COIN [45] dataset.

Model Pretraining Dataset Pretraining Samples Accuracy(↑)

TSN [46] Kinetics-400 306K 73.40
Distant Supervision [33] HowTo100M 136M 90.00
ViS4mer Kinetics-600 495K 88.41

ure 4, we illustrate our results on three LVU tasks (i.e., Writer prediction, Year
prediction, and Speaking style prediction). Our results suggest that while the
self-attention-based approach performs better when applied on clips that span
short temporal extent (i.e., 1s in duration), the state-space model achieves much
better performance when video inputs span long temporal extents (i.e., 40s and
more). These results suggest that compared to self-attention, the state-space
layers enable more effective long-range temporal reasoning.

5.3 Evaluation on Other Datasets

Lastly, to evaluate ViS4mer’s ability to generalize to other domains, we conduct
experiments on two long-range procedural activity classification datasets: Break-
fast [30] and COIN [45, 46]. The Breakfast dataset contains 1, 712 videos of 10
complex cooking activities. The average duration of the videos is 2.32 minutes.
The COIN dataset consists of 11, 827 videos capturing 180 diverse procedural
tasks. The average length of a video is 2.36 minutes.

Given the long duration of the videos in both datasets, we believe that these
datasets are well suited to test our model’s ability for long-range activity under-
standing. For all of our experiments, we use standard splits [24,46] and measure
performance in terms of activity classification accuracy.

We report our results on these two datasets in Table 7. Based on these re-
sults, we observe that ViS4mer outperforms previous approaches pretrained on
Kinetics [7, 27]. Moreover, ViS4mer achieves competitive performance as the
state-of-the-art Distant Supervision method [33], which uses several orders of
magnitude more pretraining data (i.e., HowTo100M [38]). Thus, we believe that
these results provide sufficient evidence of ViS4mer’s generalization ability.
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5.4 Qualitative Results

In Figure 5, we also illustrate some qualitative results on the LVU dataset. In
particular, we demonstrate several instances of the correct and incorrect pre-
dictions of our ViS4mer model on the relationship and genre prediction tasks.
These results indicate that our method can effectively identify the relationships
among the characters (Figure 5(a)) and the genre of the movie (Figure 5(c)).
Furthermore, these qualitative examples highlight some movie instances which
are difficult to classify even for a human (Figures 5(b), (d)), thus, illustrating
the challenging nature of long-range movie understanding tasks.

Fig. 5: Our qualitative results on the LVU dataset. ViS4mer can effectively iden-
tify (a) the relationship among the characters and (c) the genre of the movie.
Furthermore, the complex examples shown in the rows (b) (d) illustrate the
difficulties of long-range movie understanding tasks.

6 Conclusion

Combining the strength of self-attention and structured state-space sequence
models, we introduce ViS4mer, an efficient framework for long-range movie video
classification. Our method (i) is conceptually simple, (ii) achieves state-of-the-
art results on several complex movie understanding tasks, (iii) has low memory
requirement and computation cost, and (iv) successfully generalizes to other
domains such as procedural activity classification. In the future, we plan to
extend our work to other long-range video understanding tasks such as video
summarization, question answering, and video grounding.
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17. Goel, K., Gu, A., Donahue, C., Ré, C.: It’s raw! audio generation with state-space
models. arXiv preprint arXiv:2202.09729 (2022)

18. Gu, A., Dao, T., Ermon, S., Rudra, A., Ré, C.: Hippo: Recurrent memory with op-
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