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Abstract

We consider the task of image-captioning us-
ing only the CLIP model and additional text
data at training time, and no additional cap-
tioned images. Our approach relies on the fact
that CLIP is trained to make visual and tex-
tual embeddings similar. Therefore, we only
need to learn how to translate CLIP textual
embeddings back into text, and we can learn
how to do this by learning a decoder for the
frozen CLIP text encoder using only text. We
argue that this intuition is “almost correct” be-
cause of a gap between the embedding spaces,
and propose to rectify this via noise injection
during training. We demonstrate the effec-
tiveness of our approach by showing SOTA
zero-shot image captioning across four bench-
marks, including style transfer. Code, data,
and models are available at https://github.
com/DavidHuji/CapDec.

1 Introduction

Vision and language are closely intertwined, as they
are two ways of describing the world. This raises
the potential for developing models that map im-
ages and text into a shared semantic space. Indeed,
this approach has recently achieved great success
with models like CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021). These models use paral-
lel image-text data to train a joint representation,
where the embeddings of image-text pairs are simi-
lar. Such models have been employed for various
vision-language tasks.

Image captioning is a key task in vision-language
perception. Yet, training image captioning mod-
els typically requires large datasets of captioned
images, and these are challenging to collect. Fur-
thermore, it is not clear how one could adapt a
pretrained vision-language model to generate cap-
tions in new styles. In this work, we present an
approach to captioning that only requires CLIP and
text data, and generates styled captions using only

unpaired textual examples from that style. This
alleviates the need for paired text-image data, and
also allows for simple style transfer.

A first approach one could consider for this set-
ting is to train a decoder model to reconstruct texts
from their respective CLIP embeddings, and at in-
ference use this decoder to decode image embed-
dings. However, we observed that this approach
fails at inference, and we conjecture this is due
to the known domain gap between the image and
text modalities (Liang et al., 2022). We propose a
simple approach to mitigate this, by injecting noise
into the embedding during training. This has the
effect of creating a ball in embedding space that
will map to the same caption, and corresponding
image-embedding is more likely to be inside this
ball, as illustrated in Fig. 1.a.

We evaluate our “Captioning via Decoding”
(CapDec) method extensively, showing that it
works well on several image captioning tasks, in-
cluding standard, cross-domain, and style-guided
captioning. Overall, our main contributions are
as follows: 1) A simple and intuitive approach to
learning a captioning model based on CLIP and ad-
ditional text training data, but no images for train-
ing. 2) Evaluation of CapDec on image caption-
ing tasks, including generating captions in various
styles, shows it outperforms other methods which
use the same supervision.

2 Related Work

Image captioning methods (Chen and Zitnick,
2014; Chen et al., 2017; Yang et al., 2019; Her-
dade et al., 2019; Luo et al., 2021; Tsimpoukelli
et al., 2021) typically extract visual features using
a pre-trained network. These are passed to a textual
decoder that produces the final captions. To bridge
the gap between vision and language, other works
employ pre-training to create a shared latent space
of vision and text (Tan and Bansal, 2019; Laina
et al., 2019; Lu et al., 2019; Li et al., 2020; Zhou
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Figure 1: Overview of our CapDec captioning approach. (a) An illustration of the CLIP joint embedding space.
Embedded text is relatively close to its corresponding visual embedding, but with a certain gap. (b) CapDec trains
a model that decodes the CLIP embedding of text T back to text T , after noise-injection. The encoders remain
frozen. (c) At inference, CapDec simply decodes the embedding of an image using the trained decoder.

et al., 2020; Zhang et al., 2021; Wang et al., 2021;
Hu et al., 2022). However, all of these approaches
require extensive training and large paired datasets
that are hard to collect. Gan et al. (2017) and Zhao
et al. (2020) have suggested style-guided caption-
ing, but also employ training over paired data.

CLIP (2021) marked a turning point in vision-
language perception, and has been utilized for
vision-related tasks by various distillation tech-
niques (Gu et al., 2021; Song et al., 2022; Jin et al.,
2021; Gal et al., 2021; Xu et al., 2021; Khandelwal
et al., 2022). Recent captioning methods use CLIP
for reducing training time (Mokady et al., 2021),
improved captions (Shen et al., 2021; Luo et al.,
2022a,b; Cornia et al., 2021; Kuo and Kira, 2022),
and in zero-shot settings (Su et al., 2022; Tewel
et al., 2022). However, zero-shot techniques of-
ten result in inferior performance, as the produced
captions are not compatible with the desired tar-
get style, which is usually dictated by a dataset.
In this work, we suggest a new setting, where we
adapt CLIP to image captioning using only textual
data. As a result, we can easily adapt captions to
any desired caption style given instances of text
in that style. Concurrent work by Su et al. (2022)
efficiently produces high-quality captions with the
minimal supervision of text-only pre-training by
employing CLIP-induced score at inference. Our
approach is arguably simpler and also outperforms
Su et al. (2022) empirically. Note that Zhou et al.
(2021) have also employed noise-injection, but for
the opposite problem of CLIP-based text-free text-

to-image generation.

3 Method

Text-Only Training. Our goal is to learn a
model that produces a caption for a given image
I . Unlike supervised approaches, we assume that
during training we only have access to a set of
texts T . These can be obtained by harvesting a text
corpus. We next introduce notation for the CLIP
model. Given an image I let φ(I) ∈ Rd be its em-
bedding, and given a text T let ψ(T ) ∈ Rd be its
embedding. For converting a vector v ∈ Rd into a
caption, we use a textual decoder C(v) consisting
of a lightweight mapping network and a pretrained
auto-regressive language model, as suggested in
Mokady et al. (2021).

We train the decoder as follows (except for the
noise-injection which we introduce below). Each
text T ∈ T is first mapped to CLIP space via ψ(T )
and then decoded back into a text via C(ψ(T )).
We would like this decoding to be similar to the
original text T . Namely, our training objective is a
reconstruction of the input text from CLIP’s textual
embedding. At inference, given an image I we
simply apply the decoder to φ(I), returning the
caption C(φ(I)).

Noise-Injected CLIP Embeddings. We ob-
served that the above training scheme results in
inaccurate captions during inference. We conjec-
ture this is because the embeddings of the text and
image modalities are separated by a domain gap,
as shown in Liang et al. (2022). As a result, while



(A) Image Captioning

Model
MS-COCO Flickr30k

B@1 B@4 M R-L CIDEr B@1 B@4 M R-L CIDEr

Fully Supervised Approaches

BUTD 77.2 36.2 27.0 56.4 113.5 - 27.3 21.7 - 56.6
UniVLP - 36.5 28.4 - 116.9 - 30.1 23.0 - 67.4
ClipCap 74.7 33.5 27.5 - 113.1 - 21.7 22.1 47.3 53.5
Oscar - 36.5 30.3 - 123.7 - - - - -
LEMON - 40.3 30.2 - 133.3 - - - - -

Weakly or Unsupervised Approaches

ZeroCap 49.8 7.0 15.4 31.8 34.5 44.7 5.4 11.8 27.3 16.8
MAGIC 56.8 12.9 17.4 39.9 49.3 44.5 6.4 13.1 31.6 20.4

CapDec 69.2 26.4 25.1 51.8 91.8 55.5 17.7 20.0 43.9 39.1

(B) Cross-Domain Captioning
Flickr30k =⇒ MS-COCO MS-COCO =⇒ Flickr30k

B@1 B@4 M R-L CIDEr B@1 B@4 M R-L CIDEr

MAGIC 41.4 5.2 12.5 30.7 18.3 46.4 6.2 12.2 31.3 17.5

CapDec 43.3 9.2 16.3 36.7 27.3 60.2 17.3 18.6 42.7 35.7

Table 1: Results for image captioning. (A) We use captions from the COCO and Flickr30k to train CapDec and
evaluate on the datasets the captions were taken from. We report results for fully supervised methods that train on
captioned images, and on methods that use no training text (ZeroCap), or just training text and no images (CapDec
and MAGIC). (B) Similar setting to (A), but in cross-domain setup where training text is taken from one dataset,
and evaluation is done on the second dataset.

text reconstruction is successful during training,
inference fails when using image embeddings in-
stead. If image-text pairs were available, we could
attempt to learn a mapping between these domains.
Nevertheless, as we aim for text-only training, we
shall seek a different approach.

Specifically, we assume that the visual embed-
ding corresponding to a text embedding lies some-
where within a ball of small radius ε around the text
embedding (see Fig. 1). We would like all text em-
beddings in this ball to decode to the same caption,
which should also correspond to the visual content
mapped to this ball. We implement this intuition
by adding zero-mean Gaussian noise of STD ε to
the text embedding before decoding it.

The value of ε is calculated by estimating the
spread of captions corresponding to the same im-
age. Specifically, we set ε to the mean `∞ norm of
embedding differences between five captions that
correspond to the same image. We estimated this
based on captions of only 15 MS-COCO images.
Since this calculation requires very few captions
and there is no need to recalculate it for every new
dataset, we do not view it as additional supervision.

Our overall training objective is thus to mini-

mize: ∑
T∈T

`(C(ψ(T ) + n), T ) , (1)

where n ∈ Rd is a random standard Gaussian
noise with standard-deviation ε and ` is an auto-
regressive cross-entropy loss for all tokens in T .
We train just the parameters of the textual decoder
C, while the encoder ψ() is kept frozen. The noise
is sampled independently at each application of the
encoder.

4 Results

We next evaluate CapDec on several captioning
tasks, demonstrating state-of-the-art results. See
supplementary for additional details.

Image Captioning. We compare CapDec cap-
tion quality to several baselines with different su-
pervision levels, as presented in Tab. 1(A). Here,
all methods were trained end evaluated over the
same dataset, using the commonly used MS-COCO
(Lin et al., 2014; Chen et al., 2015) and Flickr30k
(Young et al., 2014). We begin by evaluating
fully supervised techniques: BUTD (Anderson
et al., 2018), UniVLP (Zhou et al., 2020), Clip-
Cap (Mokady et al., 2021), Oscar (Li et al., 2020),
and Lemon (Hu et al., 2022). As expected, these



Model Romantic Humorous

B@1 B@3 M C B@1 B@3 M C

StyleNet 13.3 1.5 4.5 7.2 13.4 0.9 4.3 11.3

MemCap 21.2 4.8 8.4 22.4 19.9 4.3 7.4 19.4

CapDec + Image-Text Pre-training 27.9 8.9 12.6 52.2 29.4 8.8 13.2 55.1

CapDec + Text-Only Pre-training 23.0 4.6 9.1 27.4 22.7 4.3 9.7 29.0

CapDec 21.4 5.0 9.6 26.9 24.9 6.0 10.2 34.1

Table 2: Style-Guided captioning results on FlickrStyle10K (Gan et al., 2017).

achieve a better score than CapDec, as they ex-
ploit the additional supervision of image-text pairs.
Nevertheless, compared to the unsupervised ap-
proaches of MAGIC (Su et al., 2022) and Zero-
Cap (Tewel et al., 2022), CapDec achieves superior
scores. Note that ZeroCap does not require any
training data, while MAGIC requires text data sim-
ilar to our setting.

Cross-Domain Captioning. We test our gener-
alization ability by training on one dataset while
evaluating on another, as in Su et al. (2022). Again,
as can be seen in Tab. 1(B), CapDec outperforms
MAGIC (Su et al., 2022), which uses the same
supervision as CapDec.

Style-Guided Captioning. Several works (Zhao
et al., 2020; Gan et al., 2017) have studied the task
of adapting a captioning model to a new style, such
as “romantic” or “humorous”. Since collecting
paired examples for each style requires great ef-
fort, these consider the setting where the new style
is only learned from text. This is easy to do in
our setting, since we can train the decoder on any
given style text. Fig. 2 shows captions generated
with CapDec in several styles (same setting and
data as in Zhao et al. (2020)). Tab. 2 reports quan-
titative results for this setting, showing CapDec
outperforms other baselines. To further analyze
our approach, we present our results without pre-
training (i.e., training on styled data only), with a
text-only pre-training over COCO, and with text-
image pre-training over COCO (similar to (Zhao
et al., 2020)). As can be seen, we outperform (Zhao
et al., 2020) even with considerably less supervi-
sion at pre-training. Moreover, both other varia-
tions improve results, demonstrating that CapDec
can effectively use additional training data where
available.

The Effect of Noise Level. A key element of
CapDec is noise injection before decoding. To

Figure 2: Example for styled captions of CapDec on
FlickrStyle10K (Gan et al., 2017).

Figure 3: The effect of the noise variance on MS-
COCO performance.

demonstrate the effect of noise, we report results
as a function of the noise variance ε2 in Fig. 3.
It can be seen that too little or too much noise is
suboptimal. We note that the noise variance we
chose, ε2=0.016,1 is based only on text, and not on
the results in Fig. 3 which are shown for analysis
purposes only.

1As mentioned in Sec. 3, we estimated the optimal STD by
the mean infinity-norm of embedding differences between cap-
tions that correspond to the same image, which is ε=

√
0.016



Figure 4: Analysis of performance of different meth-
ods as a function of the noise level (see Sec.5). We
show the CiDER metric (higher is better), as other met-
rics show similar trends. CapDec here is the same as in
Fig.3

5 Noise Injection Analysis

Noise-injection is a well-known technique for im-
proving generalization (Reed and MarksII, 1999;
Bishop, 1995; An, 1996; Vincent et al., 2010), and
can be viewed as a data augmentation mechanism
(Goodfellow et al., 2016). In our case, the use of
noise was also meant to address the modality-gap
observed in Liang et al. (2022). In order to examine
the specific effect of noise, we perform additional
evaluations on COCO and show the results in Fig.4.

Text-Reconstruction: We encode COCO cap-
tions using CLIP text embedding and decode them
using the learned CapDec model. This does not
involve images at all, and is meant to test whether
noise injection simply serves as regularization for
text auto-encoding. Fig.4 shows that adding noise
does not help, and thus suggests that noise is not
merely functioning as augmentation.

ClipCap: Recall that ClipCap is trained on joint
text-image pairs (Mokady et al., 2021). Here we
trained ClipCap by adding noise to the image em-
beddings during training. It can be seen that noise
does not improve performance, again suggesting
that improvement is due to its specific role in
domain-gap correction.

Modalities Offset: Given sufficient training
paired-data, one could presumably learn the
modalities-gap and correct for it. Here we test
a simple approximation of the gap, that does not
require image-text data to be paired, by calculating
the shift between the mean of text embeddings and
the mean of image embeddings in COCO. Then,
given an image, we add the shift to its embedding
to “correct” for this gap, and apply the CapDec
trained decoder to the resulting embedding. Had

this mapping been perfect, CapDec would not have
needed additional noise injection. The results in
Fig.4 show that the offset-correction does outper-
form CapDec at ε2 < 0.01, but underperforms over-
all. This suggests that the gap was not perfectly
estimated, and that noise injection still serves to
mitigate it. We leave it for future research to con-
sider a more complex or fully-supervised model
that learns the modality-gap explicitly.

6 Conclusion

The image captioning task has been extensively
studied, with considerable progress in recent years.
However, the number of available training datasets,
containing image-text pairs, is still rather limited.
Consequently, image captioning models inherit the
limitations of their training data, such as biases
(Hendricks et al., 2018) or confinement to neutral
style (Gan et al., 2017). In this work, we suggest
a new paradigm, where a generic vision-language
model (e.g., CLIP) is adapted to image caption-
ing using a text-only dataset. Furthermore, we
demonstrate a simple and intuitive technique to
overcome the inherent domain gap of CLIP (Liang
et al., 2022). For future work, we plan to study text-
only training for other tasks, such as visual question
answering and visual scene graph generation.

7 Ethics Statement

Image captioning models are notorious for their in-
ternal biases (Hendricks et al., 2018). These biases
are usually inherited from the training data itself.
We observe that since balancing a text-only dataset
is much more feasible than collecting balanced
text-image pairs, CapDec can be used to mitigate
those biases. For instance, consider the problem of
a dataset containing significantly more images of
snowboarding men than women. Collecting more
images requires substantial effort while replacing
"man" with "woman" (and their synonyms) in all
captions is quite simple. Therefore, our text-only
training might mitigate some of the inherited bias.

8 Limitations

We observe that although CapDec achieves supe-
rior results compared to the baselines that use only
text at training, it is still outperformed by fully
supervised baselines. Since CLIP captures rich
semantics in its latent space, we believe that text-
only training can be further improved up to the
almost same quality as supervised techniques in



future work. In addition, note that CapDec relies
on CLIP and a language model both of which were
pre-trained on large English corpora. Therefore,
we find the important task of extending CapDec’s
capabilities to other languages to be a significant
challenge.
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A Appendix

A.1 Implementation Details
We use the RN-50x4 backbone for CLIP image
encoder, and GPT-2 (large) as our language model
(implementation of Wolf et al.(Wolf et al., 2020)).
Following ClipCap (Mokady et al., 2021), for the
decoder architecture, we use a transformer-based
(Vaswani et al., 2017) mapping network where we
set the CLIP embedding length of K = 40 with
additional K = 40 constants tokens and use 8

multi-head self-attention layers with 8 heads each.
For optimization, we employed AdamW (Kingma
and Ba, 2015) with weight decay as introduced by
Loshchilov et al. (Loshchilov and Hutter, 2017),
with a learning rate of 2e−5 and 5000 warm-up
steps.

A.2 Datasets and Evaluation Metrics
When evaluating over MS-COCO (Chen et al.,
2015) and Flickr30k (Plummer et al., 2015), we
followed Karpathy(Karpathy and Fei-Fei, 2015)
split, similar to (Su et al., 2022) and (Mokady et al.,
2021). Considering the FlickrStyle10K (Gan et al.,
2017) dataset, we followed (Zhao et al., 2020), and
split the dataset randomly to 6/7, and 1/7 of train-
ing and test sets, correspondingly. For qualitative
evaluation, we employ the commonly used BLEU
(Papineni et al., 2002) (B@1,B@4), METEOR
(Denkowski and Lavie, 2014) (M), ROUGE-L (Lin
and Och, 2004) (R-L), and CIDEr (Vedantam et al.,
2015) (C) metrics.

A.3 Qualitative Comparison
All qualitative scores were reproduced or obtained
from the works of (Su et al., 2022) and (Zhao et al.,
2020) after carefully validating we use the same
splits. Our metrics implementation is adapted from
the official implementation of (Li et al., 2020).
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