--- library_name: peft tags: - axolotl - base_model:adapter:nicoboss/MedraN-E4B - lora - transformers datasets: - ICEPVP8977/Uncensored_Small_Reasoning pipeline_tag: text-generation base_model: nicoboss/MedraN-E4B model-index: - name: MedraN-E4B-Uncensored-Lora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.0.dev0` ```yaml base_model: ./HDD/MedraN_final/merged processor_type: AutoProcessor # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin cut_cross_entropy: true # for use with fft to only train on language model layers # unfrozen_parameters: # - model.language_model.* # - lm_head # - embed_tokens load_in_8bit: false load_in_4bit: false # these 3 lines are needed for now to handle vision chat templates w images skip_prepare_dataset: true remove_unused_columns: false sample_packing: false # gemma3 doesn't seem to play nice with ddp ddp_find_unused_parameters: true chat_template: gemma3n eot_tokens: - datasets: - path: /root/Uncensored_Reasoner_Small_Chat.json type: chat_template field_messages: messages dataset_prepared_path: last_run_prepared_medran_uncensored_final val_set_size: 0.01 output_dir: ./HDD/MedraN_uncensored_final adapter: lora # lora_model_dir: peft_use_rslora: true sequence_len: 5400 pad_to_sequence_len: false lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|self_attn).(up|down|gate|q|k|v|o)_proj' gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.00004 bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false auto_resume_from_checkpoints: true logging_steps: 1 #flash_attention: true eager_attention: true warmup_steps: 50 evals_per_epoch: 2 eval_max_new_tokens: 128 saves_per_epoch: 2 save_total_limit: 100 debug: weight_decay: 0.0 use_wandb: true wandb_project: "MedraN-Uncensored" wandb_name: "MedraN-Uncensored-bf16-stage1-final" deepspeed: deepspeed_configs/zero1.json ```

# HDD/MedraN_uncensored_final This model was trained from scratch on the /root/Uncensored_Reasoner_Small_Chat.json dataset. It achieves the following results on the evaluation set: - Loss: 0.4726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 5619 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0 | 0 | 1.9622 | | 1.1262 | 0.5 | 281 | 1.3529 | | 1.3188 | 1.0 | 562 | 1.2051 | | 1.0273 | 1.5 | 843 | 1.1405 | | 1.0187 | 2.0 | 1124 | 1.0350 | | 0.6996 | 2.5 | 1405 | 0.9807 | | 0.8199 | 3.0 | 1686 | 0.8967 | | 0.6026 | 3.5 | 1967 | 0.8557 | | 0.6366 | 4.0 | 2248 | 0.8061 | | 0.6249 | 4.5 | 2529 | 0.7436 | | 0.3654 | 5.0 | 2810 | 0.6693 | | 0.3942 | 5.5 | 3091 | 0.6110 | | 0.2992 | 6.0 | 3372 | 0.5921 | | 0.5288 | 6.5 | 3653 | 0.5716 | | 0.4762 | 7.0 | 3934 | 0.5238 | | 0.3181 | 7.5 | 4215 | 0.5131 | | 0.3146 | 8.0 | 4496 | 0.4884 | | 0.2855 | 8.5 | 4777 | 0.4777 | | 0.3426 | 9.0 | 5058 | 0.4762 | | 0.2711 | 9.5 | 5339 | 0.4726 | ### Framework versions - PEFT 0.16.0 - Transformers 4.53.2 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.2