ngxson HF staff commited on
Commit
06d923b
·
verified ·
1 Parent(s): 4d32216

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -180
README.md CHANGED
@@ -3,199 +3,46 @@ library_name: transformers
3
  tags:
4
  - trl
5
  - sft
 
 
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
 
10
- <!-- Provide a quick summary of what the model is/does. -->
11
 
 
12
 
 
13
 
14
- ## Model Details
 
 
 
 
15
 
16
- ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
 
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
 
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
 
30
- ### Model Sources [optional]
 
31
 
32
- <!-- Provide the basic links for the model. -->
 
33
 
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
- ## Uses
 
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
 
201
- [More Information Needed]
 
3
  tags:
4
  - trl
5
  - sft
6
+ base_model:
7
+ - meta-llama/Llama-3.2-1B-Instruct
8
+ datasets:
9
+ - ngxson/MiniThinky-dataset
10
  ---
11
 
12
+ # MiniThinky 1B
13
 
14
+ This is the newer checkpoint of [MiniThinky-1B-Llama-3.2 (version 1)](https://huggingface.co/ngxson/MiniThinky-1B-Llama-3.2), which the loss decreased from 0.7 to 0.5
15
 
16
+ Link to GGUF version: [click here](https://huggingface.co/ngxson/MiniThinky-v2-1B-Llama-3.2-Q8_0-GGUF)
17
 
18
+ Chat template is the same with llama 3, but the response will be as follow:
19
 
20
+ ```
21
+ <|thinking|>{thinking_process}
22
+ <|answer|>
23
+ {real_answer}
24
+ ```
25
 
26
+ ## IMPORTANT: System message
27
 
28
+ The model is **very sensitive** to system message. Make sure you're using this system message (system role) at the beginning of the conversation:
29
 
30
+ `You are MiniThinky, a helpful AI assistant. You always think before giving the answer. Use <|thinking|> before thinking and <|answer|> before giving the answer.`
31
 
32
+ ## Q&A
 
 
 
 
 
 
33
 
34
+ **Hardware used to trained it?**
35
+ I used a HF space with 4xL40S, trained for 5 hours. Eval loss is about 0.8
36
 
37
+ **Benchmark?**
38
+ I don't have time to do it alone. If you can help, please open a discussion!
39
 
40
+ **Can it count number of "r" in "raspberry"?**
41
+ Unfortunately no
 
42
 
43
+ **Other things that I can tune?**
44
+ Maybe lower temperature, or set top_k=1
45
 
46
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ TODO: include more info here + maybe do some benchmarks? (Plz add a discussion if you're interested)