--- library_name: transformers tags: - generated_from_trainer datasets: - json model-index: - name: workspace/models/llama-3.2-3b-math results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: /workspace/models/llama-3.2-3b-wizard model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: llama3 datasets: - path: json data_files: - /workspace/data/numina-20k/train.jsonl type: chat_template field_messages: messages message_field_role: role message_field_content: content val_set_size: 0.0 output_dir: /workspace/models/llama-3.2-3b-math sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: constant learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 2 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 save_total_limit: 10 debug: deepspeed: /workspace/axolotl-0.6.0/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# workspace/models/llama-3.2-3b-math This model was trained from scratch on the json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3