End of training
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -9,24 +9,22 @@ metrics:
|
|
9 |
- recall
|
10 |
- f1
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
|
20 |
-
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cunho2803032003/absa-1721959940.7872202/runs/bsprskdy)
|
21 |
-
# absa-train-service-roberta-large
|
22 |
|
23 |
-
This model is a fine-tuned version of [
|
24 |
It achieves the following results on the evaluation set:
|
25 |
-
- Loss:
|
26 |
-
- Accuracy: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -52,37 +50,67 @@ The following hyperparameters were used during training:
|
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
- lr_scheduler_warmup_steps: 500
|
55 |
-
- num_epochs:
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step
|
60 |
-
|
61 |
-
| 2.
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
84 |
|
85 |
-
- Transformers 4.43.
|
86 |
- Pytorch 2.3.1+cu121
|
87 |
- Datasets 2.20.0
|
88 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google-bert/bert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
|
|
9 |
- recall
|
10 |
- f1
|
11 |
model-index:
|
12 |
+
- name: gg-bert-base-uncased
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
+
# gg-bert-base-uncased
|
|
|
|
|
20 |
|
21 |
+
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.3042
|
24 |
+
- Accuracy: 0.6256
|
25 |
+
- Precision: 0.6423
|
26 |
+
- Recall: 0.6176
|
27 |
+
- F1: 0.5920
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_steps: 500
|
53 |
+
- num_epochs: 50
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
59 |
+
| 2.2916 | 1.0 | 469 | 2.2523 | 0.1248 | 0.1126 | 0.1316 | 0.0648 |
|
60 |
+
| 2.1782 | 2.0 | 938 | 2.1328 | 0.3712 | 0.4166 | 0.3539 | 0.3419 |
|
61 |
+
| 2.0827 | 3.0 | 1407 | 2.0233 | 0.4 | 0.5060 | 0.3927 | 0.3492 |
|
62 |
+
| 2.0142 | 4.0 | 1876 | 1.9946 | 0.384 | 0.4626 | 0.3980 | 0.3605 |
|
63 |
+
| 1.9595 | 5.0 | 2345 | 1.8959 | 0.4384 | 0.4411 | 0.4313 | 0.3944 |
|
64 |
+
| 1.8538 | 6.0 | 2814 | 1.8370 | 0.4608 | 0.4965 | 0.4545 | 0.4048 |
|
65 |
+
| 1.8433 | 7.0 | 3283 | 1.7877 | 0.4752 | 0.4488 | 0.4721 | 0.4176 |
|
66 |
+
| 1.8114 | 8.0 | 3752 | 1.7508 | 0.5008 | 0.5705 | 0.4936 | 0.4510 |
|
67 |
+
| 1.7872 | 9.0 | 4221 | 1.7364 | 0.464 | 0.4673 | 0.4558 | 0.4401 |
|
68 |
+
| 1.7446 | 10.0 | 4690 | 1.6801 | 0.5216 | 0.5153 | 0.5144 | 0.4871 |
|
69 |
+
| 1.7021 | 11.0 | 5159 | 1.6621 | 0.5024 | 0.5106 | 0.5007 | 0.4838 |
|
70 |
+
| 1.6819 | 12.0 | 5628 | 1.6299 | 0.5504 | 0.5087 | 0.5453 | 0.4962 |
|
71 |
+
| 1.6803 | 13.0 | 6097 | 1.6008 | 0.5408 | 0.5580 | 0.5345 | 0.4990 |
|
72 |
+
| 1.6591 | 14.0 | 6566 | 1.5753 | 0.56 | 0.6140 | 0.5528 | 0.5174 |
|
73 |
+
| 1.5972 | 15.0 | 7035 | 1.5556 | 0.5632 | 0.5939 | 0.5566 | 0.5177 |
|
74 |
+
| 1.5749 | 16.0 | 7504 | 1.5304 | 0.5824 | 0.5990 | 0.5708 | 0.5433 |
|
75 |
+
| 1.5793 | 17.0 | 7973 | 1.5174 | 0.5664 | 0.6593 | 0.5555 | 0.5065 |
|
76 |
+
| 1.569 | 18.0 | 8442 | 1.4926 | 0.5824 | 0.5748 | 0.5704 | 0.5330 |
|
77 |
+
| 1.5885 | 19.0 | 8911 | 1.4857 | 0.5776 | 0.6052 | 0.5705 | 0.5333 |
|
78 |
+
| 1.5004 | 20.0 | 9380 | 1.4639 | 0.5952 | 0.5878 | 0.5836 | 0.5496 |
|
79 |
+
| 1.5046 | 21.0 | 9849 | 1.4582 | 0.5904 | 0.5969 | 0.5846 | 0.5593 |
|
80 |
+
| 1.5247 | 22.0 | 10318 | 1.4497 | 0.584 | 0.6200 | 0.5738 | 0.5464 |
|
81 |
+
| 1.5079 | 23.0 | 10787 | 1.4411 | 0.5792 | 0.6211 | 0.5729 | 0.5379 |
|
82 |
+
| 1.4594 | 24.0 | 11256 | 1.4245 | 0.6032 | 0.5973 | 0.5983 | 0.5763 |
|
83 |
+
| 1.4362 | 25.0 | 11725 | 1.4046 | 0.6112 | 0.5904 | 0.6025 | 0.5829 |
|
84 |
+
| 1.4554 | 26.0 | 12194 | 1.3992 | 0.6 | 0.5959 | 0.5895 | 0.5661 |
|
85 |
+
| 1.4484 | 27.0 | 12663 | 1.3923 | 0.6064 | 0.6297 | 0.5998 | 0.5658 |
|
86 |
+
| 1.4666 | 28.0 | 13132 | 1.3787 | 0.6096 | 0.6321 | 0.5971 | 0.5732 |
|
87 |
+
| 1.4433 | 29.0 | 13601 | 1.3715 | 0.6112 | 0.6291 | 0.6029 | 0.5732 |
|
88 |
+
| 1.4253 | 30.0 | 14070 | 1.3686 | 0.6176 | 0.6069 | 0.6096 | 0.5917 |
|
89 |
+
| 1.4928 | 31.0 | 14539 | 1.3635 | 0.6176 | 0.6182 | 0.6103 | 0.5889 |
|
90 |
+
| 1.4585 | 32.0 | 15008 | 1.3660 | 0.6016 | 0.6105 | 0.5950 | 0.5655 |
|
91 |
+
| 1.3631 | 33.0 | 15477 | 1.3523 | 0.6224 | 0.6451 | 0.6153 | 0.5863 |
|
92 |
+
| 1.402 | 34.0 | 15946 | 1.3421 | 0.6192 | 0.6245 | 0.6117 | 0.5797 |
|
93 |
+
| 1.416 | 35.0 | 16415 | 1.3425 | 0.6192 | 0.6046 | 0.6139 | 0.5936 |
|
94 |
+
| 1.4122 | 36.0 | 16884 | 1.3347 | 0.6192 | 0.6026 | 0.6119 | 0.5916 |
|
95 |
+
| 1.361 | 37.0 | 17353 | 1.3325 | 0.6128 | 0.5946 | 0.6045 | 0.5787 |
|
96 |
+
| 1.4179 | 38.0 | 17822 | 1.3251 | 0.6128 | 0.6098 | 0.6018 | 0.5783 |
|
97 |
+
| 1.3549 | 39.0 | 18291 | 1.3191 | 0.624 | 0.6149 | 0.6150 | 0.5883 |
|
98 |
+
| 1.4217 | 40.0 | 18760 | 1.3188 | 0.6272 | 0.6471 | 0.6194 | 0.5935 |
|
99 |
+
| 1.3848 | 41.0 | 19229 | 1.3137 | 0.6336 | 0.6261 | 0.6250 | 0.6019 |
|
100 |
+
| 1.3956 | 42.0 | 19698 | 1.3141 | 0.632 | 0.6512 | 0.6243 | 0.6008 |
|
101 |
+
| 1.3965 | 43.0 | 20167 | 1.3116 | 0.6336 | 0.6523 | 0.6246 | 0.6016 |
|
102 |
+
| 1.3523 | 44.0 | 20636 | 1.3076 | 0.6288 | 0.6214 | 0.6204 | 0.5964 |
|
103 |
+
| 1.3642 | 45.0 | 21105 | 1.3093 | 0.6256 | 0.6341 | 0.6176 | 0.5921 |
|
104 |
+
| 1.3796 | 46.0 | 21574 | 1.3066 | 0.624 | 0.6388 | 0.6159 | 0.5869 |
|
105 |
+
| 1.3494 | 47.0 | 22043 | 1.3068 | 0.6272 | 0.6469 | 0.6198 | 0.5958 |
|
106 |
+
| 1.3697 | 48.0 | 22512 | 1.3051 | 0.6304 | 0.6369 | 0.6222 | 0.5975 |
|
107 |
+
| 1.3977 | 49.0 | 22981 | 1.3044 | 0.6288 | 0.6459 | 0.6208 | 0.5957 |
|
108 |
+
| 1.3568 | 50.0 | 23450 | 1.3042 | 0.6256 | 0.6423 | 0.6176 | 0.5920 |
|
109 |
|
110 |
|
111 |
### Framework versions
|
112 |
|
113 |
+
- Transformers 4.43.3
|
114 |
- Pytorch 2.3.1+cu121
|
115 |
- Datasets 2.20.0
|
116 |
- Tokenizers 0.19.1
|