--- license: apache-2.0 language: - en - vi metrics: - f1 base_model: - distilbert/distilbert-base-multilingual-cased pipeline_tag: text-classification tags: - finance - esg - financial-text-analysis - bert library_name: transformers widget: - text: >- Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation. datasets: - nguyen599/ViEn-ESG-100 --- ESG analysis can help investors determine a business' long-term sustainability and identify associated risks. ViDistilBERT-ESG-base is a [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) model fine-tuned on [ViEn-ESG-100](https://huggingface.co/datasets/nguyen599/ViEn-ESG-100) dataset, include 100,000 annotated sentences from Vietnam, English news and ESG reports. **Input**: A financial text. **Output**: Environmental, Social, Governance or None. **Language support**: English, Vietnamese # How to use You can use this model with Transformers pipeline for ESG classification. ```python # tested in transformers==4.51.0 from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline esgbert = AutoModelForSequenceClassification.from_pretrained('nguyen599/ViDistilBERT-ESG-base',num_labels=4) tokenizer = AutoTokenizer.from_pretrained('nguyen599/ViDistilBERT-ESG-base') nlp = pipeline("text-classification", model=esgbert, tokenizer=tokenizer) results = nlp('Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation.') print(results) # [{'label': 'Environment', 'score': 0.9206041026115417}] ``` # Benchmark F1 scores of models on each ESG category in the English ViEn-ESG-100 dataset.
| **Model** | **Backbone** | **Param** | **E** | **S** | **G** | **N** | | :------------ | :------------ | :------------: | :------------: | :------------: | :------------: | :------------: | | **SEC-BERT-ft** | **SEC-BERT-base** | 109M | 83.12 | 66.77 | 66.53 | 60.30 | | **FinBERT-ESG** | **FinBERT** | 109M | 92.67 | 84.90 | 86.25 | 87.26 | | **FinBERT-ESG-9-class** | **FinBERT** | 109M | 92.16 | 89.01 | 91.35 | 86.89 | | **ESGify** | **MPNet-base** | 109M | 67.72 | 30.20 | 50.76 | 43.44 | | **EnvironmentBERT** | **DistilRoBERTa** | 82M | 92.15 | - | - | 92.76 | | **SocialBERT** | **DistilRoBERTa** | 82M | - | 76.81 | - | 81.23 | | **GovernanceBERT** | **DistilRoBERTa** | 82M | - | - | 64.46 | 80.06 | | **ViBERT-ESG(Our)** | **BERT-base-cased** | 168M | 93.76 | 94.53 | 94.98 | **94.15** | | **ViRoBERTa-ESG(Our)** | **RoBERTa-base** | 124M | 95.43 | 94.06 | 95.01 | 91.32 | | **ViXLMRoBERTa-ESG(Our)** | **XLM-RoBERTa-base** | 278M | 95.00 | 95.00 | **95.47** | 92.19 | | **ViDeBERTa-ESG(Our)** | **DeBERTa-v3-base** | 184M | **95.50** | 94.49 | 94.81 | 91.48 | | **ViDeBERTa-small-ESG(Our)** | **DeBERTa-v3-small** | 141M | 94.55 | 94.85 | 94.58 | 90.19 | | **ViDistilBERT-ESG(Our)** | **DistilBERT-base-cased** | 135M | 95.15 | **95.19** | 94.33 | 91.75 | | **ViBERT-Env(Our)** | **BERT-base-cased** | 168M | 94.62 | - | - | 92.13 | | **ViBERT-Soc(Our)** | **BERT-base-cased** | 168M | - | 94.86 | - | 92.22 | | **ViBERT-Gov(Our)** | **BERT-base-cased** | 168M | - | - | 93.47 | 93.82 |
F1 scores of models on each ESG category in the Vietnamese ViEn-ESG-100 dataset.
| **Model** | **Backbone** | **Param** | **E** | **S** | **G** | **N** | | :------------ | :------------ | :------------: | :------------: | :------------: | :------------: | :------------: | | **ViBERT-ESG** | **BERT-base-cased** | 168M | 93.50 | 89.73 | 91.77 | **91.78** | | **ViRoBERTa-ESG** | **RoBERTa-base** | 124M | 93.41 | 91.49 | 89.93 | 84.32 | | **ViXLMRoBERTa-ESG** | **XLM-RoBERTa-base** | 278M | 93.45 | 91.02 | 91.69 | 90.41 | | **ViDeBERTa-ESG** | **DeBERTa-v3-base** | 184M | **95.24** | 89.36 | **93.18** | 85.23 | | **ViDeBERTa-small-ESG** | **DeBERTa-v3-small** | 141M | 92.90 | 87.79 | 90.63 | 81.48 | | **ViDistilBERT-ESG** | **DistilBERT-base-cased** | 135M | 93.87 | **91.98** | 90.63 | 87.17 | | **ViBERT-Env** | **BERT-base-cased** | 168M | 94.87 | - | - | 91.15 | | **ViBERT-Soc** | **BERT-base-cased** | 168M | - | 91.07 | - | 90.29 | | **ViBERT-Gov** | **BERT-base-cased** | 168M | - | - | 92.62 | 90.11 |