nguyen599 commited on
Commit
5721abb
·
verified ·
1 Parent(s): 5e24c21

2000 steps checkpoint

Browse files
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - vi
6
+ metrics:
7
+ - f1
8
+ base_model:
9
+ - distilbert/distilbert-base-multilingual-cased
10
+ pipeline_tag: text-classification
11
+ tags:
12
+ - finance
13
+ - esg
14
+ - financial-text-analysis
15
+ - bert
16
+ library_name: transformers
17
+ widget:
18
+ - text: "Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation."
19
+ ---
20
+
21
+ ESG analysis can help investors determine a business' long-term sustainability and identify associated risks. ViDistilBERT-ESG-base is a [https://huggingface.co/distilbert/distilbert-base-multilingual-cased](distilbert/distilbert-base-multilingual-cased) model fine-tuned on [https://huggingface.co/nguyen599/ViEn-ESG-100](ViEn-ESG-100) dataset, include 100,000 annotated sentences from Vietnam, English news and ESG reports.
22
+
23
+ **Input**: A financial text.
24
+
25
+ **Output**: Environmental, Social, Governance or None.
26
+
27
+ **Language support**: English, Vietnamese
28
+
29
+ # How to use
30
+ You can use this model with Transformers pipeline for ESG classification.
31
+ ```python
32
+ # tested in transformers==4.51.0
33
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
34
+
35
+ esgbert = AutoModelForSequenceClassification.from_pretrained('nguyen599/ViDistilBERT-ESG-base',num_labels=4)
36
+ tokenizer = AutoTokenizer.from_pretrained('nguyen599/ViDistilBERT-ESG-base')
37
+ nlp = pipeline("text-classification", model=esgbert, tokenizer=tokenizer)
38
+ results = nlp('Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation.')
39
+ print(results) # [{'label': 'Environment', 'score': 0.9206041026115417}]
40
+
41
+ ```
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "DistilBertForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "dim": 768,
8
+ "dropout": 0.1,
9
+ "hidden_dim": 3072,
10
+ "id2label": {
11
+ "0": "Neural",
12
+ "1": "Environmental",
13
+ "2": "Social",
14
+ "3": "Governance"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "label2id": {
18
+ "0": "Neural",
19
+ "1": "Environmental",
20
+ "2": "Social",
21
+ "3": "Governance"
22
+ },
23
+ "max_position_embeddings": 512,
24
+ "model_type": "distilbert",
25
+ "n_heads": 12,
26
+ "n_layers": 6,
27
+ "output_past": true,
28
+ "pad_token_id": 0,
29
+ "problem_type": "multi_label_classification",
30
+ "qa_dropout": 0.1,
31
+ "seq_classif_dropout": 0.2,
32
+ "sinusoidal_pos_embds": false,
33
+ "tie_weights_": true,
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.51.0",
36
+ "vocab_size": 119547
37
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dad68a045706014d00957a42fd4c030f36f15dc87faa2b3b0e5e5d0556da67a
3
+ size 541323528
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff