nexus666 commited on
Commit
3bc4fda
·
verified ·
1 Parent(s): e40d485

Upload 5 files

Browse files
Files changed (6) hide show
  1. .gitattributes +1 -0
  2. README.md +193 -3
  3. config.json +13 -0
  4. model.safetensors +3 -0
  5. modules.json +14 -0
  6. tokenizer.json +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,193 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-large
3
+ language:
4
+ - multilingual
5
+ - af
6
+ - am
7
+ - ar
8
+ - as
9
+ - az
10
+ - be
11
+ - bg
12
+ - bn
13
+ - br
14
+ - bs
15
+ - ca
16
+ - cs
17
+ - cy
18
+ - da
19
+ - de
20
+ - el
21
+ - en
22
+ - eo
23
+ - es
24
+ - et
25
+ - eu
26
+ - fa
27
+ - fi
28
+ - fr
29
+ - fy
30
+ - ga
31
+ - gd
32
+ - gl
33
+ - gu
34
+ - ha
35
+ - he
36
+ - hi
37
+ - hr
38
+ - hu
39
+ - hy
40
+ - id
41
+ - is
42
+ - it
43
+ - ja
44
+ - jv
45
+ - ka
46
+ - kk
47
+ - km
48
+ - kn
49
+ - ko
50
+ - ku
51
+ - ky
52
+ - la
53
+ - lo
54
+ - lt
55
+ - lv
56
+ - mg
57
+ - mk
58
+ - ml
59
+ - mn
60
+ - mr
61
+ - ms
62
+ - my
63
+ - ne
64
+ - nl
65
+ - 'no'
66
+ - om
67
+ - or
68
+ - pa
69
+ - pl
70
+ - ps
71
+ - pt
72
+ - ro
73
+ - ru
74
+ - sa
75
+ - sd
76
+ - si
77
+ - sk
78
+ - sl
79
+ - so
80
+ - sq
81
+ - sr
82
+ - su
83
+ - sv
84
+ - sw
85
+ - ta
86
+ - te
87
+ - th
88
+ - tl
89
+ - tr
90
+ - ug
91
+ - uk
92
+ - ur
93
+ - uz
94
+ - vi
95
+ - xh
96
+ - yi
97
+ - zh
98
+ library_name: model2vec
99
+ license: mit
100
+ model_name: multilingual-e5-large-m2v
101
+ tags:
102
+ - embeddings
103
+ - static-embeddings
104
+ - sentence-transformers
105
+ ---
106
+
107
+ # multilingual-e5-large-m2v Model Card
108
+
109
+ This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the intfloat/multilingual-e5-large(https://huggingface.co/intfloat/multilingual-e5-large) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. Model2Vec models are the smallest, fastest, and most performant static embedders available. The distilled models are up to 50 times smaller and 500 times faster than traditional Sentence Transformers.
110
+
111
+
112
+ ## Installation
113
+
114
+ Install model2vec using pip:
115
+ ```
116
+ pip install model2vec
117
+ ```
118
+
119
+ ## Usage
120
+
121
+ ### Using Model2Vec
122
+
123
+ The [Model2Vec library](https://github.com/MinishLab/model2vec) is the fastest and most lightweight way to run Model2Vec models.
124
+
125
+ Load this model using the `from_pretrained` method:
126
+ ```python
127
+ from model2vec import StaticModel
128
+
129
+ # Load a pretrained Model2Vec model
130
+ model = StaticModel.from_pretrained("multilingual-e5-large-m2v")
131
+
132
+ # Compute text embeddings
133
+ embeddings = model.encode(["Example sentence"])
134
+ ```
135
+
136
+ ### Using Sentence Transformers
137
+
138
+ You can also use the [Sentence Transformers library](https://github.com/UKPLab/sentence-transformers) to load and use the model:
139
+
140
+ ```python
141
+ from sentence_transformers import SentenceTransformer
142
+
143
+ # Load a pretrained Sentence Transformer model
144
+ model = SentenceTransformer("multilingual-e5-large-m2v")
145
+
146
+ # Compute text embeddings
147
+ embeddings = model.encode(["Example sentence"])
148
+ ```
149
+
150
+ ### Distilling a Model2Vec model
151
+
152
+ You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
153
+
154
+ ```python
155
+ from model2vec.distill import distill
156
+
157
+ # Distill a Sentence Transformer model, in this case the BAAI/bge-base-en-v1.5 model
158
+ m2v_model = distill(model_name="BAAI/bge-base-en-v1.5", pca_dims=256)
159
+
160
+ # Save the model
161
+ m2v_model.save_pretrained("m2v_model")
162
+ ```
163
+
164
+ ## How it works
165
+
166
+ Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
167
+
168
+ It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
169
+
170
+ ## Additional Resources
171
+
172
+ - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
173
+ - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
174
+ - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
175
+ - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
176
+ - [Website](https://minishlab.github.io/)
177
+
178
+
179
+ ## Library Authors
180
+
181
+ Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
182
+
183
+ ## Citation
184
+
185
+ Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
186
+ ```
187
+ @software{minishlab2024model2vec,
188
+ authors = {Stephan Tulkens and Thomas van Dongen},
189
+ title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
190
+ year = {2024},
191
+ url = {https://github.com/MinishLab/model2vec}
192
+ }
193
+ ```
config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "model2vec",
3
+ "architectures": [
4
+ "StaticModel"
5
+ ],
6
+ "tokenizer_name": "intfloat/multilingual-e5-large",
7
+ "apply_pca": 512,
8
+ "apply_zipf": null,
9
+ "sif_coefficient": 0.0001,
10
+ "hidden_dim": 512,
11
+ "seq_length": 1000000,
12
+ "normalize": true
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daf2a01680af6af1bab2593ac02c33368a995a22e059a3ee3163b2a2783bdabb
3
+ size 512004184
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": ".",
6
+ "type": "sentence_transformers.models.StaticEmbedding"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Normalize",
12
+ "type": "sentence_transformers.models.Normalize"
13
+ }
14
+ ]
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a56def25aa40facc030ea8b0b87f3688e4b3c39eb8b45d5702b3a1300fe2a20
3
+ size 17082734