Update README.md
Browse files
README.md
CHANGED
@@ -59,14 +59,29 @@ for seq in sequences:
|
|
59 |
|
60 |
### Training Data
|
61 |
|
62 |
-
Rago v2 13B
|
63 |
|
64 |
### Training Details
|
65 |
|
66 |
-
Rago v2 13B is built upon [Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf)
|
|
|
67 |
* LoRA Rank (R): 64
|
68 |
* LoRA Alpha: 16
|
69 |
* LoRA Dropout: 0.1
|
70 |
* Target Modules: *q_proj, k_proj, v_proj, o_proj*
|
71 |
|
72 |
-
Rago v2 13B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
### Training Data
|
61 |
|
62 |
+
Rago v2 13B has been trained using the [Neural Bridge's RAG Full 20000](https://huggingface.co/datasets/neural-bridge/rag-full-20000) dataset, which comprises a blend of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), [gms8k](https://huggingface.co/datasets/gsm8k), and [RAG Hallucination Dataset 1000](https://huggingface.co/datasets/neural-bridge/rag-hallucination-dataset-1000).
|
63 |
|
64 |
### Training Details
|
65 |
|
66 |
+
In terms of training specifics, Rago v2 13B is built upon [Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf) employing [LoRA](https://arxiv.org/abs/2106.09685) to enhance the model's capability to deliver relevant, precise, and context-specific output across specialized domains or internal datasets. This approach aims to tackle significant challenges faced by LLMs, such as unpredictability, reliance on potentially outdated information, and the spread of incorrect data. The architecture of Rago v2 13B mirrors that of [Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf), augmented with [LoRA](https://arxiv.org/abs/2106.09685) adapters. The model is trained on a single NVIDIA A100 GPU for approximately two days, utilizing a learning rate of *1e-5* with cosine scheduler, alongside the following LoRA parameters:
|
67 |
+
|
68 |
* LoRA Rank (R): 64
|
69 |
* LoRA Alpha: 16
|
70 |
* LoRA Dropout: 0.1
|
71 |
* Target Modules: *q_proj, k_proj, v_proj, o_proj*
|
72 |
|
73 |
+
Rago v2 13B benefits from a custom data collator designed to boost model performance significantly. Employing a masked language modeling (MLM) strategy, the model is fine-tuned to generate more accurate responses by exclusively masking the answer portion of the training data. This custom data collator has led to noticeable improvements in the model's factuality performance.
|
74 |
+
|
75 |
+
## **Neural Bridge AI Rago Models Index**
|
76 |
+
|
77 |
+
| Model | Link | Base Model
|
78 |
+
| ----- | ------ | ----------
|
79 |
+
| Rago v1 1B | [link](https://huggingface.co/neural-bridge/Rago-v1-1b) | [Falcon-RW-1B](https://huggingface.co/tiiuae/falcon-rw-1b)
|
80 |
+
| Rago v1 7B | [link](https://huggingface.co/neural-bridge/Rago-v1-7b) | [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b)
|
81 |
+
| Rago v1 40B | [link](https://huggingface.co/neural-bridge/Rago-v1-40b) |[Falcon-40B](https://huggingface.co/tiiuae/falcon-40b)
|
82 |
+
| Rago v2 7B | [link](https://huggingface.co/neural-bridge/Rago-v2-7b) | [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
83 |
+
| Rago v2 13B | [link](https://huggingface.co/neural-bridge/Rago-v2-13b) | [Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf)
|
84 |
+
|
85 |
+
## **Licence**
|
86 |
+
|
87 |
+
This public extract is made available under [Apache licence 2.0](https://www.apache.org/licenses/LICENSE-2.0.html). Users should also abide to the [Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b-hf) ToU.
|