Safetensors
qwen2
sabato-nocera commited on
Commit
a70553d
·
verified ·
1 Parent(s): 085034d

Dear model owner(s),
We are a group of researchers investigating the usefulness of sharing AIBOMs (Artificial Intelligence Bill of Materials) to document AI models – AIBOMs are machine-readable structured lists of components (e.g., datasets and models) used to enhance transparency in AI-model supply chains.

To pursue the above-mentioned objective, we identified popular models on HuggingFace and, based on your model card (and some configuration information available in HuggingFace), we generated your AIBOM according to the CyclonDX (v1.6) standard (see https://cyclonedx.org/docs/1.6/json/). AIBOMs are generated as JSON files by using the following open-source supporting tool: https://github.com/MSR4SBOM/ALOHA (technical details are available in the research paper: https://github.com/MSR4SBOM/ALOHA/blob/main/ALOHA.pdf).

The JSON file in this pull request is your AIBOM (see https://github.com/MSR4SBOM/ALOHA/blob/main/documentation.json for details on its structure).

Clearly, the submitted AIBOM matches the current model information, yet it can be easily regenerated when the model evolves, using the aforementioned AIBOM generator tool.

We open this pull request containing an AIBOM of your AI model, and hope it will be considered. We would also like to hear your opinion on the usefulness (or not) of AIBOM by answering a 3-minute anonymous survey: https://forms.gle/WGffSQD5dLoWttEe7.

Thanks in advance, and regards,
Riccardo D’Avino, Fatima Ahmed, Sabato Nocera, Simone Romano, Giuseppe Scanniello (University of Salerno, Italy),
Massimiliano Di Penta (University of Sannio, Italy),
The MSR4SBOM team

Files changed (1) hide show
  1. neulab_Pangea-7B.json +153 -0
neulab_Pangea-7B.json ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bomFormat": "CycloneDX",
3
+ "specVersion": "1.6",
4
+ "serialNumber": "urn:uuid:2e11cdec-907d-4d94-8fb5-403f936d9153",
5
+ "version": 1,
6
+ "metadata": {
7
+ "timestamp": "2025-06-05T09:36:57.264117+00:00",
8
+ "component": {
9
+ "type": "machine-learning-model",
10
+ "bom-ref": "neulab/Pangea-7B-0d33173e-6d50-5129-90ef-bfa7e3206cf4",
11
+ "name": "neulab/Pangea-7B",
12
+ "externalReferences": [
13
+ {
14
+ "url": "https://huggingface.co/neulab/Pangea-7B",
15
+ "type": "documentation"
16
+ }
17
+ ],
18
+ "modelCard": {
19
+ "modelParameters": {
20
+ "architectureFamily": "qwen2",
21
+ "modelArchitecture": "LlavaQwenForCausalLM",
22
+ "datasets": [
23
+ {
24
+ "ref": "neulab/PangeaInstruct-d4b50450-cdc3-5403-9299-37c49a9cf3b7"
25
+ }
26
+ ]
27
+ },
28
+ "properties": [
29
+ {
30
+ "name": "base_model",
31
+ "value": "Qwen/Qwen2-7B-Instruct"
32
+ }
33
+ ],
34
+ "consideration": {
35
+ "useCases": "Pangea-7B follows the architecture of [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).You could either (1) follow the same model loading procedures as of [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT), an example of loading Pangea-7B directly is shown in the Python code below, or (2) use our hf version of Pangea-7B: [Pangea-7B-hf]https://huggingface.co/neulab/Pangea-7B-hf"
36
+ }
37
+ },
38
+ "authors": [
39
+ {
40
+ "name": "neulab"
41
+ }
42
+ ],
43
+ "licenses": [
44
+ {
45
+ "license": {
46
+ "id": "Apache-2.0",
47
+ "url": "https://spdx.org/licenses/Apache-2.0.html"
48
+ }
49
+ }
50
+ ],
51
+ "description": "- **Model:** Pangea is a fully open-source Multilingual Multimodal Multicultural LLM.- **Date:** Pangea-7B was trained in 2024.- **Training Dataset:** [6M PangeaIns](https://huggingface.co/datasets/neulab/PangeaInstruct).- **Architecture:** Pangea-7B follows the architecture of [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT), with a [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) backbone.",
52
+ "tags": [
53
+ "safetensors",
54
+ "qwen2",
55
+ "am",
56
+ "ar",
57
+ "bg",
58
+ "bn",
59
+ "cs",
60
+ "de",
61
+ "el",
62
+ "en",
63
+ "es",
64
+ "fa",
65
+ "fr",
66
+ "ga",
67
+ "hi",
68
+ "id",
69
+ "ig",
70
+ "it",
71
+ "iw",
72
+ "ja",
73
+ "jv",
74
+ "ko",
75
+ "nl",
76
+ "mn",
77
+ "ms",
78
+ "no",
79
+ "pl",
80
+ "pt",
81
+ "ro",
82
+ "ru",
83
+ "si",
84
+ "su",
85
+ "sw",
86
+ "ta",
87
+ "te",
88
+ "th",
89
+ "tr",
90
+ "uk",
91
+ "ur",
92
+ "vi",
93
+ "zh",
94
+ "dataset:neulab/PangeaInstruct",
95
+ "arxiv:2410.16153",
96
+ "base_model:Qwen/Qwen2-7B-Instruct",
97
+ "base_model:finetune:Qwen/Qwen2-7B-Instruct",
98
+ "license:apache-2.0",
99
+ "region:us"
100
+ ]
101
+ }
102
+ },
103
+ "components": [
104
+ {
105
+ "type": "data",
106
+ "bom-ref": "neulab/PangeaInstruct-d4b50450-cdc3-5403-9299-37c49a9cf3b7",
107
+ "name": "neulab/PangeaInstruct",
108
+ "data": [
109
+ {
110
+ "type": "dataset",
111
+ "bom-ref": "neulab/PangeaInstruct-d4b50450-cdc3-5403-9299-37c49a9cf3b7",
112
+ "name": "neulab/PangeaInstruct",
113
+ "contents": {
114
+ "url": "https://huggingface.co/datasets/neulab/PangeaInstruct",
115
+ "properties": [
116
+ {
117
+ "name": "task_categories",
118
+ "value": "visual-question-answering, question-answering"
119
+ },
120
+ {
121
+ "name": "language",
122
+ "value": "am, ar, bg, bn, cs, de, el, en, es, fa, fr, ga, hi, id, ig, it, iw, ja, jv, ko, nl, mn, ms, no, pl, pt, ro, ru, si, su, sw, ta, te, th, tr, uk, ur, vi, zh"
123
+ },
124
+ {
125
+ "name": "size_categories",
126
+ "value": "1M<n<10M"
127
+ },
128
+ {
129
+ "name": "pretty_name",
130
+ "value": "PangeaIns"
131
+ },
132
+ {
133
+ "name": "license",
134
+ "value": "apache-2.0"
135
+ }
136
+ ]
137
+ },
138
+ "governance": {
139
+ "owners": [
140
+ {
141
+ "organization": {
142
+ "name": "neulab",
143
+ "url": "https://huggingface.co/neulab"
144
+ }
145
+ }
146
+ ]
147
+ },
148
+ "description": "\n\t\n\t\t\n\t\tPangeaInstruct\n\t\n\nPangea: A Fully Open Multilingual Multimodal LLM for 39 Languages\n\ud83c\uddea\ud83c\uddf9 \ud83c\uddf8\ud83c\udde6 \ud83c\udde7\ud83c\uddec \ud83c\udde7\ud83c\udde9 \ud83c\udde8\ud83c\uddff \ud83c\udde9\ud83c\uddea \ud83c\uddec\ud83c\uddf7 \ud83c\uddec\ud83c\udde7 \ud83c\uddfa\ud83c\uddf8 \ud83c\uddea\ud83c\uddf8 \ud83c\uddee\ud83c\uddf7 \ud83c\uddeb\ud83c\uddf7 \ud83c\uddee\ud83c\uddea \ud83c\uddee\ud83c\uddf3 \ud83c\uddee\ud83c\udde9 \ud83c\uddf3\ud83c\uddec \ud83c\uddee\ud83c\uddf9 \ud83c\uddee\ud83c\uddf1 \ud83c\uddef\ud83c\uddf5 \ud83c\uddee\ud83c\udde9 \ud83c\uddf0\ud83c\uddf7 \ud83c\uddf3\ud83c\uddf1 \ud83c\uddf2\ud83c\uddf3 \ud83c\uddf2\ud83c\uddfe \ud83c\uddf3\ud83c\uddf4 \ud83c\uddf5\ud83c\uddf1 \ud83c\uddf5\ud83c\uddf9 \ud83c\udde7\ud83c\uddf7 \ud83c\uddf7\ud83c\uddf4 \ud83c\uddf7\ud83c\uddfa \ud83c\uddf1\ud83c\uddf0 \ud83c\uddee\ud83c\udde9 \ud83c\uddf0\ud83c\uddea \ud83c\uddf9\ud83c\uddff \ud83c\uddf1\ud83c\uddf0 \ud83c\uddee\ud83c\uddf3 \ud83c\uddee\ud83c\uddf3 \ud83c\uddf9\ud83c\udded \ud83c\uddf9\ud83c\uddf7 \ud83c\uddfa\ud83c\udde6 \ud83c\uddf5\ud83c\uddf0 \ud83c\uddee\ud83c\uddf3 \ud83c\uddfb\ud83c\uddf3 \ud83c\udde8\ud83c\uddf3 \ud83c\uddf9\ud83c\uddfc\n\ud83c\udfe0 Homepage | \ud83e\udd16 Pangea-7B | \ud83d\udcca PangeaIns | \ud83e\uddea PangeaBench | \ud83d\udcbb Github | \ud83d\udcc4 Arxiv | \ud83d\udcd5 PDF | \ud83d\udda5\ufe0f Demo\n\n\nThis README provides comprehensive details on the PangeaIns dataset, which\u2026 See the full description on the dataset page: https://huggingface.co/datasets/neulab/PangeaInstruct."
149
+ }
150
+ ]
151
+ }
152
+ ]
153
+ }