|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
import tqdm
|
|
import torch
|
|
import torchvision
|
|
import shutil
|
|
from multiprocessing import Process
|
|
import numpy as np
|
|
from decord import VideoReader
|
|
from einops import rearrange
|
|
from eval.hyper_iqa import HyperNet, TargetNet
|
|
|
|
|
|
paths = []
|
|
|
|
|
|
def gather_paths(input_dir, output_dir):
|
|
|
|
|
|
for video in tqdm.tqdm(sorted(os.listdir(input_dir))):
|
|
if video.endswith(".mp4"):
|
|
video_input = os.path.join(input_dir, video)
|
|
video_output = os.path.join(output_dir, video)
|
|
if os.path.isfile(video_output):
|
|
continue
|
|
paths.append((video_input, video_output))
|
|
elif os.path.isdir(os.path.join(input_dir, video)):
|
|
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
|
|
|
|
|
|
def read_video(video_path: str):
|
|
vr = VideoReader(video_path)
|
|
first_frame = vr[0].asnumpy()
|
|
middle_frame = vr[len(vr) // 2].asnumpy()
|
|
last_frame = vr[-1].asnumpy()
|
|
vr.seek(0)
|
|
video_frames = np.stack([first_frame, middle_frame, last_frame], axis=0)
|
|
video_frames = torch.from_numpy(rearrange(video_frames, "b h w c -> b c h w"))
|
|
video_frames = video_frames / 255.0
|
|
return video_frames
|
|
|
|
|
|
def func(paths, device_id):
|
|
device = f"cuda:{device_id}"
|
|
|
|
model_hyper = HyperNet(16, 112, 224, 112, 56, 28, 14, 7).to(device)
|
|
model_hyper.train(False)
|
|
|
|
|
|
model_hyper.load_state_dict((torch.load("checkpoints/auxiliary/koniq_pretrained.pkl")))
|
|
|
|
transforms = torchvision.transforms.Compose(
|
|
[
|
|
torchvision.transforms.CenterCrop(size=224),
|
|
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
|
]
|
|
)
|
|
|
|
for video_input, video_output in paths:
|
|
try:
|
|
video_frames = read_video(video_input)
|
|
video_frames = transforms(video_frames)
|
|
video_frames = video_frames.clone().detach().to(device)
|
|
paras = model_hyper(video_frames)
|
|
|
|
|
|
model_target = TargetNet(paras).cuda()
|
|
for param in model_target.parameters():
|
|
param.requires_grad = False
|
|
|
|
|
|
pred = model_target(paras["target_in_vec"])
|
|
|
|
|
|
quality_score = pred.mean().item()
|
|
print(f"Input video: {video_input}\nVisual quality score: {quality_score:.2f}")
|
|
|
|
if quality_score >= 40:
|
|
os.makedirs(os.path.dirname(video_output), exist_ok=True)
|
|
shutil.copy(video_input, video_output)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def split(a, n):
|
|
k, m = divmod(len(a), n)
|
|
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
|
|
|
|
|
|
def filter_visual_quality_multi_gpus(input_dir, output_dir, num_workers):
|
|
gather_paths(input_dir, output_dir)
|
|
num_devices = torch.cuda.device_count()
|
|
if num_devices == 0:
|
|
raise RuntimeError("No GPUs found")
|
|
split_paths = list(split(paths, num_workers * num_devices))
|
|
processes = []
|
|
|
|
for i in range(num_devices):
|
|
for j in range(num_workers):
|
|
process_index = i * num_workers + j
|
|
process = Process(target=func, args=(split_paths[process_index], i))
|
|
process.start()
|
|
processes.append(process)
|
|
|
|
for process in processes:
|
|
process.join()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/av_synced_high"
|
|
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality"
|
|
num_workers = 20
|
|
|
|
filter_visual_quality_multi_gpus(input_dir, output_dir, num_workers)
|
|
|