File size: 1,886 Bytes
63d1e12
ec1a1e9
 
9ef2a89
ec1a1e9
 
9ef2a89
 
 
 
 
 
 
 
 
f7fd995
ec1a1e9
9ef2a89
 
 
 
7e61fbd
9ef2a89
 
ec1a1e9
 
 
 
 
 
63d1e12
 
9ef2a89
 
63d1e12
9ef2a89
63d1e12
2496ac0
 
 
63d1e12
9ef2a89
63d1e12
2496ac0
63d1e12
9ef2a89
63d1e12
2496ac0
63d1e12
9ef2a89
63d1e12
9ef2a89
 
 
 
 
 
 
 
 
 
 
 
63d1e12
9ef2a89
63d1e12
9ef2a89
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: ta
      split: validation
      args: ta
    metrics:
    - name: Wer
      type: wer
      value: 0.38488334784800843
    - name: Bleu
      type: bleu
      value: 0.3848277074951031
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on common_voice_17_0's Tamil dataset.
Several adapters were trained with different training set sizes. The intention was to test the improvement in performance as the quantity of training data increased.
This model should not be used to perform STT tasks.

## Intended uses & limitations

Testing purposes only. This is not intended as an STT solution.

## Training and evaluation data

common_voice_17_0 "ta"

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1