--- library_name: transformers base_model: - nbeerbower/llama-3-sauce-v1-8B datasets: - ResplendentAI/NSFW_RP_Format_NoQuote license: other license_name: llama3 tags: - nsfw - not-for-all-audiences - experimental --- # llama-3-dragonmaid-8B This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE) [llama-3-dragon-bophades-8B](https://huggingface.co/nbeerbower/nbeerbower/llama-3-dragon-bophades-8B) finetuned on [ResplendentAI/NSFW_RP_Format_NoQuote](https://huggingface.co/datasets/ResplendentAI/NSFW_RP_Format_NoQuote). ### Method Finetuned using an L4 on Google Colab. [Fine-Tune Your Own Llama 2 Model in a Colab Notebook](https://mlabonne.github.io/blog/posts/Fine_Tune_Your_Own_Llama_2_Model_in_a_Colab_Notebook.html) ### Configuration LoRA, model, and training settings: ```python training_arguments = TrainingArguments( learning_rate=2e-4, lr_scheduler_type="linear", num_train_epochs=10, per_device_train_batch_size=10, per_device_eval_batch_size=10, gradient_accumulation_steps=1, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, optim="paged_adamw_8bit", warmup_steps=10, report_to="wandb", output_dir="./results", ) trainer = SFTTrainer( model=model, train_dataset=dataset, eval_dataset=dataset.select(range(0,20)), peft_config=peft_config, dataset_text_field="input", max_seq_length=2048, tokenizer=tokenizer, args=training_arguments, ) ```