--- library_name: transformers license: apache-2.0 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo base_model: - nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B --- ![image/png](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-32B/resolve/main/dumpling_cover.png?download=true) # Dumpling-Qwen2.5-1.5B-v2 [nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B](https://huggingface.co/nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B) finetuned on: * [nbeerbower/GreatFirewall-DPO](https://huggingface.co/datasets/nbeerbower/GreatFirewall-DPO) * [nbeerbower/Schule-DPO](https://huggingface.co/datasets/nbeerbower/Schule-DPO) * [nbeerbower/Purpura-DPO](https://huggingface.co/datasets/nbeerbower/Purpura-DPO) * [nbeerbower/Arkhaios-DPO](https://huggingface.co/datasets/nbeerbower/Arkhaios-DPO) * [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) * [antiven0m/physical-reasoning-dpo](https://huggingface.co/datasets/antiven0m/physical-reasoning-dpo) * [flammenai/Date-DPO-NoAsterisks](https://huggingface.co/datasets/flammenai/Date-DPO-NoAsterisks) * [flammenai/Prude-Phi3-DPO](https://huggingface.co/datasets/flammenai/Prude-Phi3-DPO) * [Atsunori/HelpSteer2-DPO](https://huggingface.co/datasets/Atsunori/HelpSteer2-DPO) (1,000 samples) * [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1) * [nbeerbower/gutenberg2-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg2-dpo) * [nbeerbower/gutenberg-moderne-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg-moderne-dpo). ### Method [QLoRA ORPO tune](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) with 2x RTX 3090 for 2 epochs. ```python # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) # LoRA config peft_config = LoraConfig( r=64, lora_alpha=64, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] ) # Training config orpo_args = ORPOConfig( run_name=new_model, learning_rate=2e-5, lr_scheduler_type="linear", max_length=2048, max_prompt_length=1024, max_completion_length=1024, beta=0.1, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=8, optim="paged_adamw_8bit", num_train_epochs=2, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, warmup_steps=10, max_grad_norm=10, report_to="wandb", output_dir="./results/", bf16=True, ) ```