nawta commited on
Commit
9a8addc
·
1 Parent(s): dc1be15

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # wav2vec2-onomatopoeia-finetune_smalldata_ESC50pretrained_2
13
+
14
+ This model is a fine-tuned version of [/root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin](https://huggingface.co//root/workspace/wav2vec2-pretrained_with_ESC50_10000epochs_32batch_2022-07-09_22-16-46/pytorch_model.bin) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 2.6235
17
+ - Cer: 0.8973
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.0001
37
+ - train_batch_size: 64
38
+ - eval_batch_size: 16
39
+ - seed: 42
40
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
+ - lr_scheduler_type: linear
42
+ - lr_scheduler_warmup_steps: 1000
43
+ - num_epochs: 30
44
+ - mixed_precision_training: Native AMP
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
49
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
50
+ | 5.0097 | 23.81 | 500 | 2.6235 | 0.8973 |
51
+
52
+
53
+ ### Framework versions
54
+
55
+ - Transformers 4.11.3
56
+ - Pytorch 1.9.1+cu111
57
+ - Datasets 1.13.3
58
+ - Tokenizers 0.10.3