|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class HCXVisionConfig(PretrainedConfig): |
|
model_type = "hyperclovax_vlm" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
language_config_attribute_map = { |
|
"n_embd": "hidden_size", |
|
"n_positions": "max_position_embeddings", |
|
"n_head": "num_attention_heads", |
|
"n_layer": "num_hidden_layers", |
|
} |
|
|
|
def __init__( |
|
self, |
|
language_config=None, |
|
vision_config=None, |
|
use_nth_layer=-2, |
|
img_start_id=100009, |
|
decoder_max_length=4096, |
|
anyres=False, |
|
unpad=False, |
|
max_num_grids=-1, |
|
num_queries_vis_abstractor=-1, |
|
ignore_index=-100, |
|
proj_pos_emb=True, |
|
proj_prenorm=False, |
|
use_1x1_grid=False, |
|
**kwargs, |
|
): |
|
for key, val in self.language_config_attribute_map.items(): |
|
if language_config is not None and key in language_config: |
|
language_config[val] = language_config.pop(key) |
|
|
|
self.language_config = language_config |
|
self.vision_config = vision_config |
|
|
|
if language_config is not None: |
|
|
|
self.hidden_size = ( |
|
language_config["hidden_size"] if "hidden_size" in language_config else language_config["n_embd"] |
|
) |
|
|
|
self.use_nth_layer = use_nth_layer |
|
self.decoder_max_length = decoder_max_length |
|
self.anyres = anyres |
|
self.unpad = unpad |
|
self.max_num_grids = max_num_grids |
|
self.num_queries_vis_abstractor = num_queries_vis_abstractor |
|
self.img_start_id = img_start_id |
|
self.ignore_index = ignore_index |
|
self.proj_pos_emb = proj_pos_emb |
|
self.proj_prenorm = proj_prenorm |
|
self.use_1x1_grid = use_1x1_grid |
|
super().__init__(**kwargs) |
|
|