Upload folder using huggingface_hub
Browse files- added_tokens.json +35 -0
- config.json +45 -0
- configuration_hyperclovax.py +235 -0
- generation_config.json +8 -0
- merges.txt +0 -0
- model-00001-of-00012.safetensors +3 -0
- model-00002-of-00012.safetensors +3 -0
- model-00003-of-00012.safetensors +3 -0
- model-00004-of-00012.safetensors +3 -0
- model-00005-of-00012.safetensors +3 -0
- model-00006-of-00012.safetensors +3 -0
- model-00007-of-00012.safetensors +3 -0
- model-00008-of-00012.safetensors +3 -0
- model-00009-of-00012.safetensors +3 -0
- model-00010-of-00012.safetensors +3 -0
- model-00011-of-00012.safetensors +3 -0
- model-00012-of-00012.safetensors +3 -0
- model.safetensors.index.json +428 -0
- modeling_hyperclovax.py +979 -0
- special_tokens_map.json +86 -0
- tokenizer.json +0 -0
- tokenizer_config.json +501 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<EMAIL>": 110521,
|
3 |
+
"<KEY>": 110522,
|
4 |
+
"<NAME>": 110520,
|
5 |
+
"<PASSWORD>": 110523,
|
6 |
+
"<code_to_intermediate>": 110502,
|
7 |
+
"<empty_output>": 110501,
|
8 |
+
"<file_sep>": 110492,
|
9 |
+
"<intermediate_to_code>": 110503,
|
10 |
+
"<issue_closed>": 110495,
|
11 |
+
"<issue_comment>": 110494,
|
12 |
+
"<issue_start>": 110493,
|
13 |
+
"<jupyter_code>": 110498,
|
14 |
+
"<jupyter_output>": 110499,
|
15 |
+
"<jupyter_script>": 110500,
|
16 |
+
"<jupyter_start>": 110496,
|
17 |
+
"<jupyter_text>": 110497,
|
18 |
+
"<pr>": 110504,
|
19 |
+
"<pr_base>": 110507,
|
20 |
+
"<pr_base_code>": 110509,
|
21 |
+
"<pr_comment>": 110512,
|
22 |
+
"<pr_diff>": 110510,
|
23 |
+
"<pr_diff_hunk>": 110511,
|
24 |
+
"<pr_diff_hunk_comment_line>": 110519,
|
25 |
+
"<pr_event_id>": 110513,
|
26 |
+
"<pr_file>": 110508,
|
27 |
+
"<pr_in_reply_to_comment_id>": 110518,
|
28 |
+
"<pr_in_reply_to_review_id>": 110517,
|
29 |
+
"<pr_is_merged>": 110506,
|
30 |
+
"<pr_review>": 110514,
|
31 |
+
"<pr_review_comment>": 110516,
|
32 |
+
"<pr_review_state>": 110515,
|
33 |
+
"<pr_status>": 110505,
|
34 |
+
"<repo_name>": 110491
|
35 |
+
}
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"HyperCLOVAXForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attention_multiplier": 0.0078125,
|
8 |
+
"attn_pdrop": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
|
11 |
+
"AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
|
12 |
+
"AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
|
13 |
+
},
|
14 |
+
"bos_token_id": 100257,
|
15 |
+
"embd_pdrop": 0.0,
|
16 |
+
"embedding_multiplier": 10.0,
|
17 |
+
"end_token_id": 100257,
|
18 |
+
"eos_token_id": 100257,
|
19 |
+
"head_dim": 128,
|
20 |
+
"hidden_act": "silu",
|
21 |
+
"hidden_size": 6144,
|
22 |
+
"initializer_range": 0.012727922061357854,
|
23 |
+
"intermediate_size": 14336,
|
24 |
+
"logits_scaling": 0.125,
|
25 |
+
"max_position_embeddings": 131072,
|
26 |
+
"mlp_bias": false,
|
27 |
+
"model_type": "hyperclovax",
|
28 |
+
"num_attention_heads": 48,
|
29 |
+
"num_hidden_layers": 38,
|
30 |
+
"num_key_value_heads": 8,
|
31 |
+
"pad_token_id": 100257,
|
32 |
+
"pretraining_tp": 1,
|
33 |
+
"resid_pdrop": 0.0,
|
34 |
+
"residual_multiplier": 1.0,
|
35 |
+
"rms_norm_eps": 1e-05,
|
36 |
+
"rope_scaling": null,
|
37 |
+
"rope_theta": 100000000,
|
38 |
+
"summary_first_dropout": 0.0,
|
39 |
+
"tie_word_embeddings": false,
|
40 |
+
"torch_dtype": "float32",
|
41 |
+
"transformers_version": "4.52.4",
|
42 |
+
"use_cache": false,
|
43 |
+
"use_post_norm": true,
|
44 |
+
"vocab_size": 110592
|
45 |
+
}
|
configuration_hyperclovax.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# This file was created for the HyperCLOVA X SEED 14B Think architecture.
|
3 |
+
# partially copied and modified from https://github.com/huggingface/transformers
|
4 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
5 |
+
#
|
6 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
7 |
+
# and OPT implementations in this library. It has been modified from its
|
8 |
+
# original forms to accommodate minor architectural differences compared
|
9 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
"""HyperCLOVAX model configuration"""
|
23 |
+
|
24 |
+
from transformers.configuration_utils import PretrainedConfig
|
25 |
+
|
26 |
+
class HyperCLOVAXConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`HyperCLOVAXModel`]. It is used to instantiate an HyperCLOVAX
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the HyperCLOVAX.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
+
Vocabulary size of the HyperCLOVAX model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`HyperCLOVAXModel`]
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer decoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
48 |
+
num_key_value_heads (`int`, *optional*):
|
49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
55 |
+
`num_attention_heads`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
59 |
+
The maximum sequence length that this model might ever be used with.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
pad_token_id (`int`, *optional*):
|
68 |
+
Padding token id.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
70 |
+
Beginning of stream token id.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
72 |
+
End of stream token id.
|
73 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
74 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
75 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
76 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
77 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
78 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
81 |
+
The base period of the RoPE embeddings.
|
82 |
+
rope_scaling (`Dict`, *optional*):
|
83 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
84 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
85 |
+
accordingly.
|
86 |
+
Expected contents:
|
87 |
+
`rope_type` (`str`):
|
88 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
89 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
90 |
+
`factor` (`float`, *optional*):
|
91 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
92 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
93 |
+
original maximum pre-trained length.
|
94 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
95 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
96 |
+
pretraining.
|
97 |
+
`attention_factor` (`float`, *optional*):
|
98 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
99 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
100 |
+
`factor` field to infer the suggested value.
|
101 |
+
`beta_fast` (`float`, *optional*):
|
102 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
103 |
+
ramp function. If unspecified, it defaults to 32.
|
104 |
+
`beta_slow` (`float`, *optional*):
|
105 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
106 |
+
ramp function. If unspecified, it defaults to 1.
|
107 |
+
`short_factor` (`List[float]`, *optional*):
|
108 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
109 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
110 |
+
size divided by the number of attention heads divided by 2
|
111 |
+
`long_factor` (`List[float]`, *optional*):
|
112 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
113 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
114 |
+
size divided by the number of attention heads divided by 2
|
115 |
+
`low_freq_factor` (`float`, *optional*):
|
116 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
117 |
+
`high_freq_factor` (`float`, *optional*):
|
118 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
119 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
120 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
121 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
122 |
+
The dropout ratio for the attention probabilities.
|
123 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
125 |
+
head_dim (`int`, *optional*):
|
126 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
127 |
+
embedding_multiplier (`float, *optional*, defaults to `None`):
|
128 |
+
Multiplier applied to the embedding weights. If `None`, it is equivalent to `1.0`.
|
129 |
+
logits_scaling (`float, *optional*, defaults to `None`):
|
130 |
+
Scaling factor for logits. If `None`, it is equivalent to `1.0`.
|
131 |
+
attention_multiplier (`float, *optional*, defaults to `None`):
|
132 |
+
Multiplier applied to the attention weights. If `None`, it is equivalent to `self.head_dim ** -0.5`.
|
133 |
+
residual_multiplier (`float, *optional*, defaults to `None`):
|
134 |
+
Scaling factor for residual connections. If `None`, it is equivalent to `1.0`.
|
135 |
+
use_post_norm (`bool`, *optional*, defaults to `False`):
|
136 |
+
Determines whether to apply Peri-Layer Normalization. Set to True to enable this feature.
|
137 |
+
|
138 |
+
```python
|
139 |
+
>>> from transformers import HyperCLOVAXModel, HyperCLOVAXConfig
|
140 |
+
|
141 |
+
>>> # Initializing a HyperCLOVAX HyperCLOVAX style configuration
|
142 |
+
>>> configuration = HyperCLOVAXConfig()
|
143 |
+
|
144 |
+
>>> # Initializing a model from the HyperCLOVAX style configuration
|
145 |
+
>>> model = HyperCLOVAXModel(configuration)
|
146 |
+
|
147 |
+
>>> # Accessing the model configuration
|
148 |
+
>>> configuration = model.config
|
149 |
+
```"""
|
150 |
+
|
151 |
+
model_type = "hyperclovax"
|
152 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
vocab_size=32000,
|
157 |
+
hidden_size=4096,
|
158 |
+
intermediate_size=11008,
|
159 |
+
num_hidden_layers=32,
|
160 |
+
num_attention_heads=32,
|
161 |
+
num_key_value_heads=None,
|
162 |
+
hidden_act="silu",
|
163 |
+
max_position_embeddings=2048,
|
164 |
+
initializer_range=0.02,
|
165 |
+
rms_norm_eps=1e-6,
|
166 |
+
use_cache=True,
|
167 |
+
pad_token_id=None,
|
168 |
+
bos_token_id=1,
|
169 |
+
eos_token_id=2,
|
170 |
+
pretraining_tp=1,
|
171 |
+
tie_word_embeddings=False,
|
172 |
+
rope_theta=10000.0,
|
173 |
+
rope_scaling=None,
|
174 |
+
attention_bias=False,
|
175 |
+
attention_dropout=0.0,
|
176 |
+
mlp_bias=False,
|
177 |
+
head_dim=None,
|
178 |
+
embedding_multiplier=None, # MuP
|
179 |
+
logits_scaling=None, # MuP
|
180 |
+
attention_multiplier=None, # MuP
|
181 |
+
residual_multiplier=None, # MuP
|
182 |
+
use_post_norm=False, # Peri-LN (post-norm)
|
183 |
+
auto_map={
|
184 |
+
"AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
|
185 |
+
"AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
|
186 |
+
"AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
|
187 |
+
},
|
188 |
+
**kwargs,
|
189 |
+
):
|
190 |
+
self.vocab_size = vocab_size
|
191 |
+
self.max_position_embeddings = max_position_embeddings
|
192 |
+
self.hidden_size = hidden_size
|
193 |
+
self.intermediate_size = intermediate_size
|
194 |
+
self.num_hidden_layers = num_hidden_layers
|
195 |
+
self.num_attention_heads = num_attention_heads
|
196 |
+
|
197 |
+
# for backward compatibility
|
198 |
+
if num_key_value_heads is None:
|
199 |
+
num_key_value_heads = num_attention_heads
|
200 |
+
|
201 |
+
self.num_key_value_heads = num_key_value_heads
|
202 |
+
self.hidden_act = hidden_act
|
203 |
+
self.initializer_range = initializer_range
|
204 |
+
self.rms_norm_eps = rms_norm_eps
|
205 |
+
self.pretraining_tp = pretraining_tp
|
206 |
+
self.use_cache = use_cache
|
207 |
+
self.rope_theta = rope_theta
|
208 |
+
self.rope_scaling = rope_scaling
|
209 |
+
self.attention_bias = attention_bias
|
210 |
+
self.attention_dropout = attention_dropout
|
211 |
+
self.mlp_bias = mlp_bias
|
212 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
213 |
+
# Validate the correctness of rotary position embeddings parameters
|
214 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
215 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
216 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
217 |
+
# rope_config_validation(self)
|
218 |
+
|
219 |
+
# MuP
|
220 |
+
self.embedding_multiplier = embedding_multiplier if embedding_multiplier is not None else 1.0
|
221 |
+
self.logits_scaling = logits_scaling if logits_scaling is not None else 1.0
|
222 |
+
self.attention_multiplier = attention_multiplier if attention_multiplier is not None else self.head_dim ** -0.5
|
223 |
+
self.residual_multiplier = residual_multiplier if residual_multiplier is not None else 1.0
|
224 |
+
|
225 |
+
# Peri-LN (post-norm)
|
226 |
+
self.use_post_norm = use_post_norm
|
227 |
+
|
228 |
+
super().__init__(
|
229 |
+
pad_token_id=pad_token_id,
|
230 |
+
bos_token_id=bos_token_id,
|
231 |
+
eos_token_id=eos_token_id,
|
232 |
+
tie_word_embeddings=tie_word_embeddings,
|
233 |
+
auto_map=auto_map,
|
234 |
+
**kwargs,
|
235 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100257,
|
4 |
+
"eos_token_id": 100257,
|
5 |
+
"pad_token_id": 100257,
|
6 |
+
"transformers_version": "4.52.4",
|
7 |
+
"use_cache": false
|
8 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:305362a08287f1a07c8901b17569030003342501439732b35372f141488e624d
|
3 |
+
size 4831938472
|
model-00002-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff239283211a4d509ae03a47d26eb81981a1e6629b8593e7fea6f7bc982cc7ee
|
3 |
+
size 4932899128
|
model-00003-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a87408267364edb5e0ad365c01d33272ecd767eef3a59dcae20b5c4e2b80d2d9
|
3 |
+
size 4932800744
|
model-00004-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34be38a9cd94474e2145567c0d8d8e772e38811a6b7cc7ff21ad32b78cd82e28
|
3 |
+
size 4932899160
|
model-00005-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04b93ef8634259a055d34eda87bc7f0c07493be1729979da93c7fd0b63b4cfc8
|
3 |
+
size 4932800784
|
model-00006-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0166c99db8788a872fe9677d88095116586807e61466caeffb1b317815025485
|
3 |
+
size 4932899168
|
model-00007-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3091a6c988544d07a79a12ac4e6327d0b80802af7463f657fa55706760a7b16
|
3 |
+
size 4932800784
|
model-00008-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:437804c0b8b0ac88e24253304a7c0d27c0e94ee54fdba2d6b6474f0fcfd71f77
|
3 |
+
size 4932899168
|
model-00009-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bae7aa1fb3ec4ac0d8a9046a15b8674d80b1165ec423b66c3429416846bd076
|
3 |
+
size 4932800784
|
model-00010-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ec60ba7881c3afa594a584bde88d806582eab0f7768a70549d377b06544c27
|
3 |
+
size 4932899168
|
model-00011-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c2e182da134b1702e84be4f6bff0157182bb8870963b470da45acc4fd9102f5
|
3 |
+
size 4932800784
|
model-00012-of-00012.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ced46cb6d54cc2ace518803b1d350211b110560a7d841412b61d22b09f55e
|
3 |
+
size 4832061536
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 58992451584
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00012-of-00012.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00012.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00012.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00012.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00012.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00012.safetensors",
|
13 |
+
"model.layers.0.post_norm1.weight": "model-00001-of-00012.safetensors",
|
14 |
+
"model.layers.0.post_norm2.weight": "model-00001-of-00012.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00012.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00012.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00012.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00012.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00012.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
|
24 |
+
"model.layers.1.post_norm1.weight": "model-00002-of-00012.safetensors",
|
25 |
+
"model.layers.1.post_norm2.weight": "model-00002-of-00012.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00012.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00012.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00012.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00012.safetensors",
|
30 |
+
"model.layers.10.input_layernorm.weight": "model-00004-of-00012.safetensors",
|
31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
|
32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
|
33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
|
34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
|
35 |
+
"model.layers.10.post_norm1.weight": "model-00004-of-00012.safetensors",
|
36 |
+
"model.layers.10.post_norm2.weight": "model-00004-of-00012.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
|
41 |
+
"model.layers.11.input_layernorm.weight": "model-00004-of-00012.safetensors",
|
42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
|
43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
|
44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
|
45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
|
46 |
+
"model.layers.11.post_norm1.weight": "model-00004-of-00012.safetensors",
|
47 |
+
"model.layers.11.post_norm2.weight": "model-00004-of-00012.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
|
49 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
|
52 |
+
"model.layers.12.input_layernorm.weight": "model-00005-of-00012.safetensors",
|
53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
|
54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
|
55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
|
56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
|
57 |
+
"model.layers.12.post_norm1.weight": "model-00005-of-00012.safetensors",
|
58 |
+
"model.layers.12.post_norm2.weight": "model-00005-of-00012.safetensors",
|
59 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
|
60 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
|
63 |
+
"model.layers.13.input_layernorm.weight": "model-00005-of-00012.safetensors",
|
64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
|
65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
|
66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
|
67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
|
68 |
+
"model.layers.13.post_norm1.weight": "model-00005-of-00012.safetensors",
|
69 |
+
"model.layers.13.post_norm2.weight": "model-00005-of-00012.safetensors",
|
70 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
|
71 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
|
74 |
+
"model.layers.14.input_layernorm.weight": "model-00005-of-00012.safetensors",
|
75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
|
76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
|
77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
|
78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
|
79 |
+
"model.layers.14.post_norm1.weight": "model-00005-of-00012.safetensors",
|
80 |
+
"model.layers.14.post_norm2.weight": "model-00005-of-00012.safetensors",
|
81 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
|
82 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
|
85 |
+
"model.layers.15.input_layernorm.weight": "model-00006-of-00012.safetensors",
|
86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
|
87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
|
88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
|
89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
|
90 |
+
"model.layers.15.post_norm1.weight": "model-00006-of-00012.safetensors",
|
91 |
+
"model.layers.15.post_norm2.weight": "model-00006-of-00012.safetensors",
|
92 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
|
93 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
|
96 |
+
"model.layers.16.input_layernorm.weight": "model-00006-of-00012.safetensors",
|
97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
|
98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
|
99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
|
100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
|
101 |
+
"model.layers.16.post_norm1.weight": "model-00006-of-00012.safetensors",
|
102 |
+
"model.layers.16.post_norm2.weight": "model-00006-of-00012.safetensors",
|
103 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
|
104 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
|
107 |
+
"model.layers.17.input_layernorm.weight": "model-00006-of-00012.safetensors",
|
108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
|
109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
|
110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
|
111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
|
112 |
+
"model.layers.17.post_norm1.weight": "model-00006-of-00012.safetensors",
|
113 |
+
"model.layers.17.post_norm2.weight": "model-00006-of-00012.safetensors",
|
114 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
|
115 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
|
118 |
+
"model.layers.18.input_layernorm.weight": "model-00006-of-00012.safetensors",
|
119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
|
120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
|
121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
|
122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
|
123 |
+
"model.layers.18.post_norm1.weight": "model-00006-of-00012.safetensors",
|
124 |
+
"model.layers.18.post_norm2.weight": "model-00006-of-00012.safetensors",
|
125 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
|
126 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
|
129 |
+
"model.layers.19.input_layernorm.weight": "model-00007-of-00012.safetensors",
|
130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
|
131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
|
132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
|
133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
|
134 |
+
"model.layers.19.post_norm1.weight": "model-00007-of-00012.safetensors",
|
135 |
+
"model.layers.19.post_norm2.weight": "model-00007-of-00012.safetensors",
|
136 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
|
137 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
|
140 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00012.safetensors",
|
141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
|
142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
|
143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
|
144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
|
145 |
+
"model.layers.2.post_norm1.weight": "model-00002-of-00012.safetensors",
|
146 |
+
"model.layers.2.post_norm2.weight": "model-00002-of-00012.safetensors",
|
147 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
|
148 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
|
151 |
+
"model.layers.20.input_layernorm.weight": "model-00007-of-00012.safetensors",
|
152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
|
153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
|
154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
|
155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
|
156 |
+
"model.layers.20.post_norm1.weight": "model-00007-of-00012.safetensors",
|
157 |
+
"model.layers.20.post_norm2.weight": "model-00007-of-00012.safetensors",
|
158 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
|
159 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00007-of-00012.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
|
167 |
+
"model.layers.21.post_norm1.weight": "model-00007-of-00012.safetensors",
|
168 |
+
"model.layers.21.post_norm2.weight": "model-00007-of-00012.safetensors",
|
169 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
|
170 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
|
173 |
+
"model.layers.22.input_layernorm.weight": "model-00008-of-00012.safetensors",
|
174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
|
175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
|
176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
|
177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
|
178 |
+
"model.layers.22.post_norm1.weight": "model-00008-of-00012.safetensors",
|
179 |
+
"model.layers.22.post_norm2.weight": "model-00008-of-00012.safetensors",
|
180 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
|
181 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
|
184 |
+
"model.layers.23.input_layernorm.weight": "model-00008-of-00012.safetensors",
|
185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
|
186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
|
187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
|
188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
|
189 |
+
"model.layers.23.post_norm1.weight": "model-00008-of-00012.safetensors",
|
190 |
+
"model.layers.23.post_norm2.weight": "model-00008-of-00012.safetensors",
|
191 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
|
192 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
|
195 |
+
"model.layers.24.input_layernorm.weight": "model-00008-of-00012.safetensors",
|
196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
|
197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
|
198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
|
199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
|
200 |
+
"model.layers.24.post_norm1.weight": "model-00008-of-00012.safetensors",
|
201 |
+
"model.layers.24.post_norm2.weight": "model-00008-of-00012.safetensors",
|
202 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
|
203 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
|
206 |
+
"model.layers.25.input_layernorm.weight": "model-00008-of-00012.safetensors",
|
207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
|
208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
|
209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
|
210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
|
211 |
+
"model.layers.25.post_norm1.weight": "model-00008-of-00012.safetensors",
|
212 |
+
"model.layers.25.post_norm2.weight": "model-00008-of-00012.safetensors",
|
213 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
|
214 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
|
217 |
+
"model.layers.26.input_layernorm.weight": "model-00009-of-00012.safetensors",
|
218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
|
219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
|
220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
|
221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
|
222 |
+
"model.layers.26.post_norm1.weight": "model-00009-of-00012.safetensors",
|
223 |
+
"model.layers.26.post_norm2.weight": "model-00009-of-00012.safetensors",
|
224 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
|
225 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
|
228 |
+
"model.layers.27.input_layernorm.weight": "model-00009-of-00012.safetensors",
|
229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
|
230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
|
231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
|
232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
|
233 |
+
"model.layers.27.post_norm1.weight": "model-00009-of-00012.safetensors",
|
234 |
+
"model.layers.27.post_norm2.weight": "model-00009-of-00012.safetensors",
|
235 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
|
236 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
|
239 |
+
"model.layers.28.input_layernorm.weight": "model-00009-of-00012.safetensors",
|
240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
|
241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
|
242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
|
243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
|
244 |
+
"model.layers.28.post_norm1.weight": "model-00009-of-00012.safetensors",
|
245 |
+
"model.layers.28.post_norm2.weight": "model-00009-of-00012.safetensors",
|
246 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
|
247 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
|
250 |
+
"model.layers.29.input_layernorm.weight": "model-00010-of-00012.safetensors",
|
251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
|
252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
|
253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
|
254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
|
255 |
+
"model.layers.29.post_norm1.weight": "model-00010-of-00012.safetensors",
|
256 |
+
"model.layers.29.post_norm2.weight": "model-00010-of-00012.safetensors",
|
257 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
|
258 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00012.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
|
266 |
+
"model.layers.3.post_norm1.weight": "model-00002-of-00012.safetensors",
|
267 |
+
"model.layers.3.post_norm2.weight": "model-00002-of-00012.safetensors",
|
268 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
|
269 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
|
272 |
+
"model.layers.30.input_layernorm.weight": "model-00010-of-00012.safetensors",
|
273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
|
274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
|
275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
|
276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
|
277 |
+
"model.layers.30.post_norm1.weight": "model-00010-of-00012.safetensors",
|
278 |
+
"model.layers.30.post_norm2.weight": "model-00010-of-00012.safetensors",
|
279 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
|
280 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
|
283 |
+
"model.layers.31.input_layernorm.weight": "model-00010-of-00012.safetensors",
|
284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
|
285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
|
286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
|
287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
|
288 |
+
"model.layers.31.post_norm1.weight": "model-00010-of-00012.safetensors",
|
289 |
+
"model.layers.31.post_norm2.weight": "model-00010-of-00012.safetensors",
|
290 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
|
291 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
|
294 |
+
"model.layers.32.input_layernorm.weight": "model-00010-of-00012.safetensors",
|
295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
|
296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
|
297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
|
298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
|
299 |
+
"model.layers.32.post_norm1.weight": "model-00010-of-00012.safetensors",
|
300 |
+
"model.layers.32.post_norm2.weight": "model-00010-of-00012.safetensors",
|
301 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
|
302 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
|
303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
|
304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
|
305 |
+
"model.layers.33.input_layernorm.weight": "model-00011-of-00012.safetensors",
|
306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
|
307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
|
308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
|
309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
|
310 |
+
"model.layers.33.post_norm1.weight": "model-00011-of-00012.safetensors",
|
311 |
+
"model.layers.33.post_norm2.weight": "model-00011-of-00012.safetensors",
|
312 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
|
313 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
|
314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
|
315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
|
316 |
+
"model.layers.34.input_layernorm.weight": "model-00011-of-00012.safetensors",
|
317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
|
318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
|
319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
|
320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
|
321 |
+
"model.layers.34.post_norm1.weight": "model-00011-of-00012.safetensors",
|
322 |
+
"model.layers.34.post_norm2.weight": "model-00011-of-00012.safetensors",
|
323 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
|
324 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
|
325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
|
326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
|
327 |
+
"model.layers.35.input_layernorm.weight": "model-00011-of-00012.safetensors",
|
328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
|
329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
|
330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
|
331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
|
332 |
+
"model.layers.35.post_norm1.weight": "model-00011-of-00012.safetensors",
|
333 |
+
"model.layers.35.post_norm2.weight": "model-00011-of-00012.safetensors",
|
334 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
|
335 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
|
336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
|
337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
|
338 |
+
"model.layers.36.input_layernorm.weight": "model-00012-of-00012.safetensors",
|
339 |
+
"model.layers.36.mlp.down_proj.weight": "model-00012-of-00012.safetensors",
|
340 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
|
341 |
+
"model.layers.36.mlp.up_proj.weight": "model-00012-of-00012.safetensors",
|
342 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
|
343 |
+
"model.layers.36.post_norm1.weight": "model-00012-of-00012.safetensors",
|
344 |
+
"model.layers.36.post_norm2.weight": "model-00012-of-00012.safetensors",
|
345 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
|
346 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
|
347 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
|
348 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
|
349 |
+
"model.layers.37.input_layernorm.weight": "model-00012-of-00012.safetensors",
|
350 |
+
"model.layers.37.mlp.down_proj.weight": "model-00012-of-00012.safetensors",
|
351 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00012-of-00012.safetensors",
|
352 |
+
"model.layers.37.mlp.up_proj.weight": "model-00012-of-00012.safetensors",
|
353 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
|
354 |
+
"model.layers.37.post_norm1.weight": "model-00012-of-00012.safetensors",
|
355 |
+
"model.layers.37.post_norm2.weight": "model-00012-of-00012.safetensors",
|
356 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00012-of-00012.safetensors",
|
357 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00012-of-00012.safetensors",
|
358 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00012-of-00012.safetensors",
|
359 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00012-of-00012.safetensors",
|
360 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00012.safetensors",
|
361 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
|
362 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
|
363 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
|
364 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
|
365 |
+
"model.layers.4.post_norm1.weight": "model-00002-of-00012.safetensors",
|
366 |
+
"model.layers.4.post_norm2.weight": "model-00002-of-00012.safetensors",
|
367 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
|
368 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
|
369 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
|
370 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
|
371 |
+
"model.layers.5.input_layernorm.weight": "model-00003-of-00012.safetensors",
|
372 |
+
"model.layers.5.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
|
373 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
|
374 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
|
375 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
|
376 |
+
"model.layers.5.post_norm1.weight": "model-00003-of-00012.safetensors",
|
377 |
+
"model.layers.5.post_norm2.weight": "model-00003-of-00012.safetensors",
|
378 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
|
379 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
|
380 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
|
381 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
|
382 |
+
"model.layers.6.input_layernorm.weight": "model-00003-of-00012.safetensors",
|
383 |
+
"model.layers.6.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
|
384 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
|
385 |
+
"model.layers.6.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
|
386 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
|
387 |
+
"model.layers.6.post_norm1.weight": "model-00003-of-00012.safetensors",
|
388 |
+
"model.layers.6.post_norm2.weight": "model-00003-of-00012.safetensors",
|
389 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
|
390 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
|
391 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
|
392 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
|
393 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00012.safetensors",
|
394 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
|
395 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
|
396 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
|
397 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
|
398 |
+
"model.layers.7.post_norm1.weight": "model-00003-of-00012.safetensors",
|
399 |
+
"model.layers.7.post_norm2.weight": "model-00003-of-00012.safetensors",
|
400 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
|
401 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
|
402 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
|
403 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
|
404 |
+
"model.layers.8.input_layernorm.weight": "model-00004-of-00012.safetensors",
|
405 |
+
"model.layers.8.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
|
406 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
|
407 |
+
"model.layers.8.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
|
408 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
|
409 |
+
"model.layers.8.post_norm1.weight": "model-00004-of-00012.safetensors",
|
410 |
+
"model.layers.8.post_norm2.weight": "model-00004-of-00012.safetensors",
|
411 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
|
412 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
|
413 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
|
414 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
|
415 |
+
"model.layers.9.input_layernorm.weight": "model-00004-of-00012.safetensors",
|
416 |
+
"model.layers.9.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
|
417 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
|
418 |
+
"model.layers.9.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
|
419 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
|
420 |
+
"model.layers.9.post_norm1.weight": "model-00004-of-00012.safetensors",
|
421 |
+
"model.layers.9.post_norm2.weight": "model-00004-of-00012.safetensors",
|
422 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
|
423 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
|
424 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
|
425 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
|
426 |
+
"model.norm.weight": "model-00012-of-00012.safetensors"
|
427 |
+
}
|
428 |
+
}
|
modeling_hyperclovax.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# This file was created for the HyperCLOVA X SEED 14B Think architecture.
|
3 |
+
# partially copied and modified from https://github.com/huggingface/transformers
|
4 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
5 |
+
#
|
6 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
7 |
+
# and OPT implementations in this library. It has been modified from its
|
8 |
+
# original forms to accommodate minor architectural differences compared
|
9 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
from typing import Callable, Optional, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.cache_utils import Cache, DynamicCache
|
30 |
+
from transformers.generation import GenerationMixin
|
31 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
32 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
33 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
34 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutputWithPast,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
43 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
44 |
+
from transformers.processing_utils import Unpack
|
45 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
46 |
+
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
47 |
+
from .configuration_hyperclovax import HyperCLOVAXConfig
|
48 |
+
if is_torch_flex_attn_available():
|
49 |
+
from torch.nn.attention.flex_attention import BlockMask
|
50 |
+
|
51 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
57 |
+
class HyperCLOVAXRMSNorm(nn.Module):
|
58 |
+
def __init__(self, hidden_size, eps=1e-6):
|
59 |
+
"""
|
60 |
+
HyperCLOVAXRMSNorm is equivalent to T5LayerNorm
|
61 |
+
"""
|
62 |
+
super().__init__()
|
63 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
64 |
+
self.variance_epsilon = eps
|
65 |
+
|
66 |
+
def forward(self, hidden_states):
|
67 |
+
input_dtype = hidden_states.dtype
|
68 |
+
hidden_states = hidden_states.to(torch.float32)
|
69 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
70 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
71 |
+
return self.weight * hidden_states.to(input_dtype)
|
72 |
+
|
73 |
+
def extra_repr(self):
|
74 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
75 |
+
|
76 |
+
ALL_LAYERNORM_LAYERS.append(HyperCLOVAXRMSNorm)
|
77 |
+
class HyperCLOVAXRotaryEmbedding(nn.Module):
|
78 |
+
def __init__(self, config: HyperCLOVAXConfig, device=None):
|
79 |
+
super().__init__()
|
80 |
+
# BC: "rope_type" was originally "type"
|
81 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
82 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
83 |
+
else:
|
84 |
+
self.rope_type = "default"
|
85 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
86 |
+
self.original_max_seq_len = config.max_position_embeddings
|
87 |
+
|
88 |
+
self.config = config
|
89 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
90 |
+
|
91 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
92 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
93 |
+
self.original_inv_freq = self.inv_freq
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
97 |
+
def forward(self, x, position_ids):
|
98 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
99 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
100 |
+
|
101 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
102 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
103 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
104 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
105 |
+
cos = emb.cos() * self.attention_scaling
|
106 |
+
sin = emb.sin() * self.attention_scaling
|
107 |
+
|
108 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
109 |
+
|
110 |
+
|
111 |
+
def rotate_half(x):
|
112 |
+
"""Rotates half the hidden dims of the input."""
|
113 |
+
x1 = x[..., : x.shape[-1] // 2]
|
114 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
115 |
+
return torch.cat((-x2, x1), dim=-1)
|
116 |
+
|
117 |
+
|
118 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
119 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
q (`torch.Tensor`): The query tensor.
|
123 |
+
k (`torch.Tensor`): The key tensor.
|
124 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
125 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
126 |
+
position_ids (`torch.Tensor`, *optional*):
|
127 |
+
Deprecated and unused.
|
128 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
129 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
130 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
131 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
132 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
133 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
134 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
135 |
+
Returns:
|
136 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
137 |
+
"""
|
138 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
139 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
140 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
141 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
142 |
+
return q_embed, k_embed
|
143 |
+
|
144 |
+
|
145 |
+
class HyperCLOVAXMLP(nn.Module):
|
146 |
+
def __init__(self, config):
|
147 |
+
super().__init__()
|
148 |
+
self.config = config
|
149 |
+
self.hidden_size = config.hidden_size
|
150 |
+
self.intermediate_size = config.intermediate_size
|
151 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
152 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
153 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
154 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
158 |
+
return down_proj
|
159 |
+
|
160 |
+
|
161 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
162 |
+
"""
|
163 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
164 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
165 |
+
"""
|
166 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
167 |
+
if n_rep == 1:
|
168 |
+
return hidden_states
|
169 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
170 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
171 |
+
|
172 |
+
|
173 |
+
def eager_attention_forward(
|
174 |
+
module: nn.Module,
|
175 |
+
query: torch.Tensor,
|
176 |
+
key: torch.Tensor,
|
177 |
+
value: torch.Tensor,
|
178 |
+
attention_mask: Optional[torch.Tensor],
|
179 |
+
scaling: float,
|
180 |
+
dropout: float = 0.0,
|
181 |
+
**kwargs,
|
182 |
+
):
|
183 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
184 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
185 |
+
|
186 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
187 |
+
if attention_mask is not None:
|
188 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
189 |
+
attn_weights = attn_weights + causal_mask
|
190 |
+
|
191 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
192 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
193 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
194 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
195 |
+
|
196 |
+
return attn_output, attn_weights
|
197 |
+
|
198 |
+
|
199 |
+
class HyperCLOVAXAttention(nn.Module):
|
200 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
201 |
+
|
202 |
+
def __init__(self, config: HyperCLOVAXConfig, layer_idx: int):
|
203 |
+
super().__init__()
|
204 |
+
self.config = config
|
205 |
+
self.layer_idx = layer_idx
|
206 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
207 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
208 |
+
self.scaling = getattr(config, "attention_multiplier", self.head_dim**-0.5) # MuP
|
209 |
+
self.attention_dropout = config.attention_dropout
|
210 |
+
self.is_causal = True
|
211 |
+
|
212 |
+
self.q_proj = nn.Linear(
|
213 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
214 |
+
)
|
215 |
+
self.k_proj = nn.Linear(
|
216 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
217 |
+
)
|
218 |
+
self.v_proj = nn.Linear(
|
219 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
220 |
+
)
|
221 |
+
self.o_proj = nn.Linear(
|
222 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
223 |
+
)
|
224 |
+
|
225 |
+
def forward(
|
226 |
+
self,
|
227 |
+
hidden_states: torch.Tensor,
|
228 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
229 |
+
attention_mask: Optional[torch.Tensor],
|
230 |
+
past_key_value: Optional[Cache] = None,
|
231 |
+
cache_position: Optional[torch.LongTensor] = None,
|
232 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
233 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
234 |
+
input_shape = hidden_states.shape[:-1]
|
235 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
236 |
+
|
237 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
238 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
239 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
240 |
+
|
241 |
+
cos, sin = position_embeddings
|
242 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
243 |
+
|
244 |
+
if past_key_value is not None:
|
245 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
246 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
247 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
248 |
+
|
249 |
+
attention_interface: Callable = eager_attention_forward
|
250 |
+
|
251 |
+
if self.config._attn_implementation != "eager":
|
252 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
253 |
+
logger.warning_once(
|
254 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
255 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
256 |
+
)
|
257 |
+
else:
|
258 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
259 |
+
|
260 |
+
attn_output, attn_weights = attention_interface(
|
261 |
+
self,
|
262 |
+
query_states,
|
263 |
+
key_states,
|
264 |
+
value_states,
|
265 |
+
attention_mask,
|
266 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
267 |
+
scaling=self.scaling,
|
268 |
+
**kwargs,
|
269 |
+
)
|
270 |
+
|
271 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
272 |
+
attn_output = self.o_proj(attn_output)
|
273 |
+
return attn_output, attn_weights
|
274 |
+
|
275 |
+
|
276 |
+
class HyperCLOVAXDecoderLayer(GradientCheckpointingLayer):
|
277 |
+
def __init__(self, config: HyperCLOVAXConfig, layer_idx: int):
|
278 |
+
super().__init__()
|
279 |
+
self.hidden_size = config.hidden_size
|
280 |
+
|
281 |
+
self.self_attn = HyperCLOVAXAttention(config=config, layer_idx=layer_idx)
|
282 |
+
|
283 |
+
self.mlp = HyperCLOVAXMLP(config)
|
284 |
+
self.input_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
285 |
+
self.post_attention_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
286 |
+
self.use_post_norm = getattr(config, "use_post_norm", False)
|
287 |
+
|
288 |
+
# Peri-LN (post-norm)
|
289 |
+
if self.use_post_norm:
|
290 |
+
self.post_norm1 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
291 |
+
self.post_norm2 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
292 |
+
|
293 |
+
self.residual_multiplier = getattr(config, "residual_multiplier", 1.0) # MuP
|
294 |
+
|
295 |
+
def forward(
|
296 |
+
self,
|
297 |
+
hidden_states: torch.Tensor,
|
298 |
+
attention_mask: Optional[torch.Tensor] = None,
|
299 |
+
position_ids: Optional[torch.LongTensor] = None,
|
300 |
+
past_key_value: Optional[Cache] = None,
|
301 |
+
output_attentions: Optional[bool] = False,
|
302 |
+
use_cache: Optional[bool] = False,
|
303 |
+
cache_position: Optional[torch.LongTensor] = None,
|
304 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
305 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
306 |
+
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
307 |
+
residual = hidden_states
|
308 |
+
hidden_states = self.input_layernorm(hidden_states)
|
309 |
+
|
310 |
+
# Self Attention
|
311 |
+
hidden_states, self_attn_weights = self.self_attn(
|
312 |
+
hidden_states=hidden_states,
|
313 |
+
attention_mask=attention_mask,
|
314 |
+
position_ids=position_ids,
|
315 |
+
past_key_value=past_key_value,
|
316 |
+
output_attentions=output_attentions,
|
317 |
+
use_cache=use_cache,
|
318 |
+
cache_position=cache_position,
|
319 |
+
position_embeddings=position_embeddings,
|
320 |
+
**kwargs,
|
321 |
+
)
|
322 |
+
|
323 |
+
if self.use_post_norm: # Peri-LN
|
324 |
+
hidden_states = self.post_norm1(hidden_states)
|
325 |
+
|
326 |
+
hidden_states = residual + hidden_states * self.residual_multiplier # MuP
|
327 |
+
|
328 |
+
# Fully Connected
|
329 |
+
residual = hidden_states
|
330 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
331 |
+
hidden_states = self.mlp(hidden_states)
|
332 |
+
|
333 |
+
if self.use_post_norm: # Peri-LN
|
334 |
+
hidden_states = self.post_norm2(hidden_states)
|
335 |
+
|
336 |
+
hidden_states = residual + hidden_states * self.residual_multiplier # MuP
|
337 |
+
|
338 |
+
outputs = (hidden_states,)
|
339 |
+
if output_attentions:
|
340 |
+
outputs += (self_attn_weights,)
|
341 |
+
|
342 |
+
return outputs
|
343 |
+
|
344 |
+
|
345 |
+
@auto_docstring
|
346 |
+
class HyperCLOVAXPreTrainedModel(PreTrainedModel):
|
347 |
+
config_class = HyperCLOVAXConfig
|
348 |
+
base_model_prefix = "model"
|
349 |
+
supports_gradient_checkpointing = True
|
350 |
+
_no_split_modules = ["HyperCLOVAXDecoderLayer"]
|
351 |
+
_skip_keys_device_placement = ["past_key_values"]
|
352 |
+
_supports_flash_attn_2 = True
|
353 |
+
_supports_sdpa = True
|
354 |
+
_supports_flex_attn = True
|
355 |
+
_supports_cache_class = True
|
356 |
+
_supports_quantized_cache = True
|
357 |
+
_supports_static_cache = True
|
358 |
+
_supports_attention_backend = True
|
359 |
+
|
360 |
+
def _init_weights(self, module):
|
361 |
+
std = self.config.initializer_range
|
362 |
+
if isinstance(module, nn.Linear):
|
363 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
364 |
+
if module.bias is not None:
|
365 |
+
module.bias.data.zero_()
|
366 |
+
elif isinstance(module, nn.Embedding):
|
367 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
368 |
+
if module.padding_idx is not None:
|
369 |
+
module.weight.data[module.padding_idx].zero_()
|
370 |
+
elif isinstance(module, HyperCLOVAXRMSNorm):
|
371 |
+
module.weight.data.fill_(1.0)
|
372 |
+
|
373 |
+
|
374 |
+
@auto_docstring
|
375 |
+
class HyperCLOVAXModel(HyperCLOVAXPreTrainedModel):
|
376 |
+
def __init__(self, config: HyperCLOVAXConfig):
|
377 |
+
super().__init__(config)
|
378 |
+
self.padding_idx = config.pad_token_id
|
379 |
+
self.vocab_size = config.vocab_size
|
380 |
+
|
381 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
382 |
+
self.layers = nn.ModuleList(
|
383 |
+
[HyperCLOVAXDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
384 |
+
)
|
385 |
+
self.norm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
386 |
+
self.rotary_emb = HyperCLOVAXRotaryEmbedding(config=config)
|
387 |
+
self.gradient_checkpointing = False
|
388 |
+
|
389 |
+
# Initialize weights and apply final processing
|
390 |
+
self.post_init()
|
391 |
+
|
392 |
+
# MuP
|
393 |
+
self.embedding_multiplier = getattr(config, "embedding_multiplier", 1.0)
|
394 |
+
|
395 |
+
def get_input_embeddings(self):
|
396 |
+
return self.embed_tokens
|
397 |
+
|
398 |
+
def set_input_embeddings(self, value):
|
399 |
+
self.embed_tokens = value
|
400 |
+
|
401 |
+
@can_return_tuple
|
402 |
+
@auto_docstring
|
403 |
+
def forward(
|
404 |
+
self,
|
405 |
+
input_ids: Optional[torch.LongTensor] = None,
|
406 |
+
attention_mask: Optional[torch.Tensor] = None,
|
407 |
+
position_ids: Optional[torch.LongTensor] = None,
|
408 |
+
past_key_values: Optional[Cache] = None,
|
409 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
410 |
+
use_cache: Optional[bool] = None,
|
411 |
+
output_attentions: Optional[bool] = None,
|
412 |
+
output_hidden_states: Optional[bool] = None,
|
413 |
+
cache_position: Optional[torch.LongTensor] = None,
|
414 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
415 |
+
) -> BaseModelOutputWithPast:
|
416 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
417 |
+
output_hidden_states = (
|
418 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
419 |
+
)
|
420 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
421 |
+
|
422 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
423 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
424 |
+
|
425 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
426 |
+
logger.warning_once(
|
427 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
428 |
+
)
|
429 |
+
use_cache = False
|
430 |
+
|
431 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
432 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
433 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
434 |
+
|
435 |
+
if inputs_embeds is None:
|
436 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
437 |
+
|
438 |
+
inputs_embeds = inputs_embeds * self.embedding_multiplier # MuP
|
439 |
+
|
440 |
+
if use_cache and past_key_values is None:
|
441 |
+
past_key_values = DynamicCache()
|
442 |
+
|
443 |
+
if cache_position is None:
|
444 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
445 |
+
cache_position = torch.arange(
|
446 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
447 |
+
)
|
448 |
+
|
449 |
+
if position_ids is None:
|
450 |
+
position_ids = cache_position.unsqueeze(0)
|
451 |
+
|
452 |
+
causal_mask = self._update_causal_mask(
|
453 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
454 |
+
)
|
455 |
+
|
456 |
+
hidden_states = inputs_embeds
|
457 |
+
|
458 |
+
# create position embeddings to be shared across the decoder layers
|
459 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
460 |
+
|
461 |
+
# decoder layers
|
462 |
+
all_hidden_states = () if output_hidden_states else None
|
463 |
+
all_self_attns = () if output_attentions else None
|
464 |
+
|
465 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
466 |
+
if output_hidden_states:
|
467 |
+
all_hidden_states += (hidden_states,)
|
468 |
+
|
469 |
+
layer_outputs = decoder_layer(
|
470 |
+
hidden_states,
|
471 |
+
attention_mask=causal_mask,
|
472 |
+
position_ids=position_ids,
|
473 |
+
past_key_value=past_key_values,
|
474 |
+
output_attentions=output_attentions,
|
475 |
+
use_cache=use_cache,
|
476 |
+
cache_position=cache_position,
|
477 |
+
position_embeddings=position_embeddings,
|
478 |
+
**flash_attn_kwargs,
|
479 |
+
)
|
480 |
+
|
481 |
+
hidden_states = layer_outputs[0]
|
482 |
+
|
483 |
+
if output_attentions:
|
484 |
+
all_self_attns += (layer_outputs[1],)
|
485 |
+
|
486 |
+
hidden_states = self.norm(hidden_states)
|
487 |
+
|
488 |
+
# add hidden states from the last decoder layer
|
489 |
+
if output_hidden_states:
|
490 |
+
all_hidden_states += (hidden_states,)
|
491 |
+
|
492 |
+
return BaseModelOutputWithPast(
|
493 |
+
last_hidden_state=hidden_states,
|
494 |
+
past_key_values=past_key_values if use_cache else None,
|
495 |
+
hidden_states=all_hidden_states,
|
496 |
+
attentions=all_self_attns,
|
497 |
+
)
|
498 |
+
|
499 |
+
def _update_causal_mask(
|
500 |
+
self,
|
501 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
502 |
+
input_tensor: torch.Tensor,
|
503 |
+
cache_position: torch.Tensor,
|
504 |
+
past_key_values: Cache,
|
505 |
+
output_attentions: bool = False,
|
506 |
+
):
|
507 |
+
if self.config._attn_implementation == "flash_attention_2":
|
508 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
509 |
+
return attention_mask
|
510 |
+
return None
|
511 |
+
if self.config._attn_implementation == "flex_attention":
|
512 |
+
if isinstance(attention_mask, torch.Tensor):
|
513 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
514 |
+
return attention_mask
|
515 |
+
|
516 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
517 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
518 |
+
# to infer the attention mask.
|
519 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
520 |
+
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
|
521 |
+
|
522 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
523 |
+
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
|
524 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
525 |
+
attention_mask,
|
526 |
+
inputs_embeds=input_tensor,
|
527 |
+
past_key_values_length=past_seen_tokens,
|
528 |
+
is_training=self.training,
|
529 |
+
):
|
530 |
+
return None
|
531 |
+
|
532 |
+
dtype = input_tensor.dtype
|
533 |
+
sequence_length = input_tensor.shape[1]
|
534 |
+
if using_compilable_cache:
|
535 |
+
target_length = past_key_values.get_max_cache_shape()
|
536 |
+
else:
|
537 |
+
target_length = (
|
538 |
+
attention_mask.shape[-1]
|
539 |
+
if isinstance(attention_mask, torch.Tensor)
|
540 |
+
else past_seen_tokens + sequence_length + 1
|
541 |
+
)
|
542 |
+
|
543 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
544 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
545 |
+
attention_mask,
|
546 |
+
sequence_length=sequence_length,
|
547 |
+
target_length=target_length,
|
548 |
+
dtype=dtype,
|
549 |
+
cache_position=cache_position,
|
550 |
+
batch_size=input_tensor.shape[0],
|
551 |
+
)
|
552 |
+
|
553 |
+
if (
|
554 |
+
self.config._attn_implementation == "sdpa"
|
555 |
+
and attention_mask is not None
|
556 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
557 |
+
and not output_attentions
|
558 |
+
):
|
559 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
560 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
561 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
562 |
+
min_dtype = torch.finfo(dtype).min
|
563 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
564 |
+
|
565 |
+
return causal_mask
|
566 |
+
|
567 |
+
@staticmethod
|
568 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
569 |
+
attention_mask: torch.Tensor,
|
570 |
+
sequence_length: int,
|
571 |
+
target_length: int,
|
572 |
+
dtype: torch.dtype,
|
573 |
+
cache_position: torch.Tensor,
|
574 |
+
batch_size: int,
|
575 |
+
**kwargs,
|
576 |
+
):
|
577 |
+
"""
|
578 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
579 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
580 |
+
|
581 |
+
Args:
|
582 |
+
attention_mask (`torch.Tensor`):
|
583 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
584 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
585 |
+
sequence_length (`int`):
|
586 |
+
The sequence length being processed.
|
587 |
+
target_length (`int`):
|
588 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
589 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
590 |
+
dtype (`torch.dtype`):
|
591 |
+
The dtype to use for the 4D attention mask.
|
592 |
+
cache_position (`torch.Tensor`):
|
593 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
594 |
+
batch_size (`torch.Tensor`):
|
595 |
+
Batch size.
|
596 |
+
"""
|
597 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
598 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
599 |
+
causal_mask = attention_mask
|
600 |
+
else:
|
601 |
+
min_dtype = torch.finfo(dtype).min
|
602 |
+
causal_mask = torch.full(
|
603 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
604 |
+
)
|
605 |
+
if sequence_length != 1:
|
606 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
607 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
608 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
609 |
+
if attention_mask is not None:
|
610 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
611 |
+
mask_length = attention_mask.shape[-1]
|
612 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
613 |
+
causal_mask.device
|
614 |
+
)
|
615 |
+
padding_mask = padding_mask == 0
|
616 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
617 |
+
padding_mask, min_dtype
|
618 |
+
)
|
619 |
+
|
620 |
+
return causal_mask
|
621 |
+
|
622 |
+
|
623 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
624 |
+
|
625 |
+
|
626 |
+
@auto_docstring
|
627 |
+
class HyperCLOVAXForCausalLM(HyperCLOVAXPreTrainedModel, GenerationMixin):
|
628 |
+
_tied_weights_keys = ["lm_head.weight"]
|
629 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
630 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
631 |
+
|
632 |
+
def __init__(self, config):
|
633 |
+
super().__init__(config)
|
634 |
+
self.model = HyperCLOVAXModel(config)
|
635 |
+
self.vocab_size = config.vocab_size
|
636 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
637 |
+
self.logits_scaling = getattr(config, "logits_scaling", 1.0)
|
638 |
+
|
639 |
+
# Initialize weights and apply final processing
|
640 |
+
self.post_init()
|
641 |
+
|
642 |
+
def get_input_embeddings(self):
|
643 |
+
return self.model.embed_tokens
|
644 |
+
|
645 |
+
def set_input_embeddings(self, value):
|
646 |
+
self.model.embed_tokens = value
|
647 |
+
|
648 |
+
def get_output_embeddings(self):
|
649 |
+
return self.lm_head
|
650 |
+
|
651 |
+
def set_output_embeddings(self, new_embeddings):
|
652 |
+
self.lm_head = new_embeddings
|
653 |
+
|
654 |
+
def set_decoder(self, decoder):
|
655 |
+
self.model = decoder
|
656 |
+
|
657 |
+
def get_decoder(self):
|
658 |
+
return self.model
|
659 |
+
|
660 |
+
@can_return_tuple
|
661 |
+
@auto_docstring
|
662 |
+
def forward(
|
663 |
+
self,
|
664 |
+
input_ids: Optional[torch.LongTensor] = None,
|
665 |
+
attention_mask: Optional[torch.Tensor] = None,
|
666 |
+
position_ids: Optional[torch.LongTensor] = None,
|
667 |
+
past_key_values: Optional[Cache] = None,
|
668 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
669 |
+
labels: Optional[torch.LongTensor] = None,
|
670 |
+
use_cache: Optional[bool] = None,
|
671 |
+
output_attentions: Optional[bool] = None,
|
672 |
+
output_hidden_states: Optional[bool] = None,
|
673 |
+
cache_position: Optional[torch.LongTensor] = None,
|
674 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
675 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
676 |
+
) -> CausalLMOutputWithPast:
|
677 |
+
r"""
|
678 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
679 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
680 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
681 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
682 |
+
|
683 |
+
Example:
|
684 |
+
|
685 |
+
```python
|
686 |
+
>>> from transformers import AutoTokenizer, HyperCLOVAXForCausalLM
|
687 |
+
|
688 |
+
>>> model = HyperCLOVAXForCausalLM.from_pretrained("naver-hyperclovax/{model_name}")
|
689 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/{model_name}")
|
690 |
+
|
691 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
692 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
693 |
+
|
694 |
+
>>> # Generate
|
695 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
696 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
697 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
698 |
+
```"""
|
699 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
700 |
+
output_hidden_states = (
|
701 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
702 |
+
)
|
703 |
+
|
704 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
705 |
+
outputs: BaseModelOutputWithPast = self.model(
|
706 |
+
input_ids=input_ids,
|
707 |
+
attention_mask=attention_mask,
|
708 |
+
position_ids=position_ids,
|
709 |
+
past_key_values=past_key_values,
|
710 |
+
inputs_embeds=inputs_embeds,
|
711 |
+
use_cache=use_cache,
|
712 |
+
output_attentions=output_attentions,
|
713 |
+
output_hidden_states=output_hidden_states,
|
714 |
+
cache_position=cache_position,
|
715 |
+
**kwargs,
|
716 |
+
)
|
717 |
+
|
718 |
+
hidden_states = outputs.last_hidden_state
|
719 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
720 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
721 |
+
# MuP
|
722 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :]) * self.logits_scaling
|
723 |
+
|
724 |
+
loss = None
|
725 |
+
if labels is not None:
|
726 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
727 |
+
|
728 |
+
return CausalLMOutputWithPast(
|
729 |
+
loss=loss,
|
730 |
+
logits=logits,
|
731 |
+
past_key_values=outputs.past_key_values,
|
732 |
+
hidden_states=outputs.hidden_states,
|
733 |
+
attentions=outputs.attentions,
|
734 |
+
)
|
735 |
+
|
736 |
+
|
737 |
+
@auto_docstring(
|
738 |
+
custom_intro="""
|
739 |
+
The HyperCLOVAX Model transformer with a sequence classification head on top (linear layer).
|
740 |
+
|
741 |
+
[`HyperCLOVAXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
742 |
+
(e.g. GPT-2) do.
|
743 |
+
|
744 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
745 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
746 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
747 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
748 |
+
each row of the batch).
|
749 |
+
"""
|
750 |
+
)
|
751 |
+
class HyperCLOVAXForSequenceClassification(HyperCLOVAXPreTrainedModel):
|
752 |
+
def __init__(self, config):
|
753 |
+
super().__init__(config)
|
754 |
+
self.num_labels = config.num_labels
|
755 |
+
self.model = HyperCLOVAXModel(config)
|
756 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
757 |
+
|
758 |
+
# Initialize weights and apply final processing
|
759 |
+
self.post_init()
|
760 |
+
|
761 |
+
def get_input_embeddings(self):
|
762 |
+
return self.model.embed_tokens
|
763 |
+
|
764 |
+
def set_input_embeddings(self, value):
|
765 |
+
self.model.embed_tokens = value
|
766 |
+
|
767 |
+
@can_return_tuple
|
768 |
+
@auto_docstring
|
769 |
+
def forward(
|
770 |
+
self,
|
771 |
+
input_ids: Optional[torch.LongTensor] = None,
|
772 |
+
attention_mask: Optional[torch.Tensor] = None,
|
773 |
+
position_ids: Optional[torch.LongTensor] = None,
|
774 |
+
past_key_values: Optional[Cache] = None,
|
775 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
776 |
+
labels: Optional[torch.LongTensor] = None,
|
777 |
+
use_cache: Optional[bool] = None,
|
778 |
+
output_attentions: Optional[bool] = None,
|
779 |
+
output_hidden_states: Optional[bool] = None,
|
780 |
+
) -> SequenceClassifierOutputWithPast:
|
781 |
+
r"""
|
782 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
783 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
784 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
785 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
786 |
+
"""
|
787 |
+
|
788 |
+
transformer_outputs: BaseModelOutputWithPast = self.model(
|
789 |
+
input_ids,
|
790 |
+
attention_mask=attention_mask,
|
791 |
+
position_ids=position_ids,
|
792 |
+
past_key_values=past_key_values,
|
793 |
+
inputs_embeds=inputs_embeds,
|
794 |
+
use_cache=use_cache,
|
795 |
+
output_attentions=output_attentions,
|
796 |
+
output_hidden_states=output_hidden_states,
|
797 |
+
)
|
798 |
+
hidden_states = transformer_outputs.last_hidden_state
|
799 |
+
logits = self.score(hidden_states)
|
800 |
+
|
801 |
+
if input_ids is not None:
|
802 |
+
batch_size = input_ids.shape[0]
|
803 |
+
else:
|
804 |
+
batch_size = inputs_embeds.shape[0]
|
805 |
+
|
806 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
807 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
808 |
+
if self.config.pad_token_id is None:
|
809 |
+
last_non_pad_token = -1
|
810 |
+
elif input_ids is not None:
|
811 |
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
812 |
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
813 |
+
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
|
814 |
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
815 |
+
else:
|
816 |
+
last_non_pad_token = -1
|
817 |
+
logger.warning_once(
|
818 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
819 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
820 |
+
)
|
821 |
+
|
822 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
|
823 |
+
|
824 |
+
loss = None
|
825 |
+
if labels is not None:
|
826 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
827 |
+
|
828 |
+
return SequenceClassifierOutputWithPast(
|
829 |
+
loss=loss,
|
830 |
+
logits=pooled_logits,
|
831 |
+
past_key_values=transformer_outputs.past_key_values,
|
832 |
+
hidden_states=transformer_outputs.hidden_states,
|
833 |
+
attentions=transformer_outputs.attentions,
|
834 |
+
)
|
835 |
+
|
836 |
+
|
837 |
+
@auto_docstring
|
838 |
+
class HyperCLOVAXForQuestionAnswering(HyperCLOVAXPreTrainedModel):
|
839 |
+
base_model_prefix = "transformer"
|
840 |
+
|
841 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->HyperCLOVAX
|
842 |
+
def __init__(self, config):
|
843 |
+
super().__init__(config)
|
844 |
+
self.transformer = HyperCLOVAXModel(config)
|
845 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
846 |
+
|
847 |
+
# Initialize weights and apply final processing
|
848 |
+
self.post_init()
|
849 |
+
|
850 |
+
def get_input_embeddings(self):
|
851 |
+
return self.transformer.embed_tokens
|
852 |
+
|
853 |
+
def set_input_embeddings(self, value):
|
854 |
+
self.transformer.embed_tokens = value
|
855 |
+
|
856 |
+
@can_return_tuple
|
857 |
+
@auto_docstring
|
858 |
+
def forward(
|
859 |
+
self,
|
860 |
+
input_ids: Optional[torch.LongTensor] = None,
|
861 |
+
attention_mask: Optional[torch.Tensor] = None,
|
862 |
+
position_ids: Optional[torch.LongTensor] = None,
|
863 |
+
past_key_values: Optional[Cache] = None,
|
864 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
865 |
+
start_positions: Optional[torch.LongTensor] = None,
|
866 |
+
end_positions: Optional[torch.LongTensor] = None,
|
867 |
+
output_attentions: Optional[bool] = None,
|
868 |
+
output_hidden_states: Optional[bool] = None,
|
869 |
+
**kwargs,
|
870 |
+
) -> QuestionAnsweringModelOutput:
|
871 |
+
outputs: BaseModelOutputWithPast = self.transformer(
|
872 |
+
input_ids,
|
873 |
+
attention_mask=attention_mask,
|
874 |
+
position_ids=position_ids,
|
875 |
+
past_key_values=past_key_values,
|
876 |
+
inputs_embeds=inputs_embeds,
|
877 |
+
output_attentions=output_attentions,
|
878 |
+
output_hidden_states=output_hidden_states,
|
879 |
+
)
|
880 |
+
|
881 |
+
sequence_output = outputs.last_hidden_state
|
882 |
+
|
883 |
+
logits = self.qa_outputs(sequence_output)
|
884 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
885 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
886 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
887 |
+
|
888 |
+
loss = None
|
889 |
+
if start_positions is not None and end_positions is not None:
|
890 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
891 |
+
|
892 |
+
return QuestionAnsweringModelOutput(
|
893 |
+
loss=loss,
|
894 |
+
start_logits=start_logits,
|
895 |
+
end_logits=end_logits,
|
896 |
+
hidden_states=outputs.hidden_states,
|
897 |
+
attentions=outputs.attentions,
|
898 |
+
)
|
899 |
+
|
900 |
+
|
901 |
+
@auto_docstring
|
902 |
+
class HyperCLOVAXForTokenClassification(HyperCLOVAXPreTrainedModel):
|
903 |
+
def __init__(self, config):
|
904 |
+
super().__init__(config)
|
905 |
+
self.num_labels = config.num_labels
|
906 |
+
self.model = HyperCLOVAXModel(config)
|
907 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
908 |
+
classifier_dropout = config.classifier_dropout
|
909 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
910 |
+
classifier_dropout = config.hidden_dropout
|
911 |
+
else:
|
912 |
+
classifier_dropout = 0.1
|
913 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
914 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
915 |
+
|
916 |
+
# Initialize weights and apply final processing
|
917 |
+
self.post_init()
|
918 |
+
|
919 |
+
def get_input_embeddings(self):
|
920 |
+
return self.model.embed_tokens
|
921 |
+
|
922 |
+
def set_input_embeddings(self, value):
|
923 |
+
self.model.embed_tokens = value
|
924 |
+
|
925 |
+
@can_return_tuple
|
926 |
+
@auto_docstring
|
927 |
+
def forward(
|
928 |
+
self,
|
929 |
+
input_ids: Optional[torch.LongTensor] = None,
|
930 |
+
attention_mask: Optional[torch.Tensor] = None,
|
931 |
+
position_ids: Optional[torch.LongTensor] = None,
|
932 |
+
past_key_values: Optional[Cache] = None,
|
933 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
934 |
+
labels: Optional[torch.LongTensor] = None,
|
935 |
+
use_cache: Optional[bool] = None,
|
936 |
+
output_attentions: Optional[bool] = None,
|
937 |
+
output_hidden_states: Optional[bool] = None,
|
938 |
+
) -> TokenClassifierOutput:
|
939 |
+
r"""
|
940 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
941 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
942 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
943 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
944 |
+
"""
|
945 |
+
|
946 |
+
outputs: BaseModelOutputWithPast = self.model(
|
947 |
+
input_ids,
|
948 |
+
attention_mask=attention_mask,
|
949 |
+
position_ids=position_ids,
|
950 |
+
past_key_values=past_key_values,
|
951 |
+
inputs_embeds=inputs_embeds,
|
952 |
+
use_cache=use_cache,
|
953 |
+
output_attentions=output_attentions,
|
954 |
+
output_hidden_states=output_hidden_states,
|
955 |
+
)
|
956 |
+
sequence_output = outputs.last_hidden_state
|
957 |
+
sequence_output = self.dropout(sequence_output)
|
958 |
+
logits = self.score(sequence_output)
|
959 |
+
|
960 |
+
loss = None
|
961 |
+
if labels is not None:
|
962 |
+
loss = self.loss_function(logits, labels, self.config)
|
963 |
+
|
964 |
+
return TokenClassifierOutput(
|
965 |
+
loss=loss,
|
966 |
+
logits=logits,
|
967 |
+
hidden_states=outputs.hidden_states,
|
968 |
+
attentions=outputs.attentions,
|
969 |
+
)
|
970 |
+
|
971 |
+
|
972 |
+
__all__ = [
|
973 |
+
"HyperCLOVAXForCausalLM",
|
974 |
+
"HyperCLOVAXModel",
|
975 |
+
"HyperCLOVAXPreTrainedModel",
|
976 |
+
"HyperCLOVAXForSequenceClassification",
|
977 |
+
"HyperCLOVAXForQuestionAnswering",
|
978 |
+
"HyperCLOVAXForTokenClassification",
|
979 |
+
]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<|fim_prefix|>",
|
5 |
+
"<|fim_middle|>",
|
6 |
+
"<|fim_suffix|>",
|
7 |
+
"<|endofprompt|>",
|
8 |
+
"<|_unuse_missing_100256|>",
|
9 |
+
"<|_unuse_missing_100261|>",
|
10 |
+
"<|_unuse_missing_100262|>",
|
11 |
+
"<|_unuse_missing_100263|>",
|
12 |
+
"<|_unuse_missing_100264|>",
|
13 |
+
"<|_unuse_missing_100265|>",
|
14 |
+
"<|_unuse_missing_100266|>",
|
15 |
+
"<|_unuse_missing_100267|>",
|
16 |
+
"<|_unuse_missing_100268|>",
|
17 |
+
"<|_unuse_missing_100269|>",
|
18 |
+
"<|_unuse_missing_100270|>",
|
19 |
+
"<|_unuse_missing_100271|>",
|
20 |
+
"<|im_start|>",
|
21 |
+
"<|im_end|>",
|
22 |
+
"<|stop|>",
|
23 |
+
"<|endofturn|>",
|
24 |
+
"<repo_name>",
|
25 |
+
"<file_sep>",
|
26 |
+
"<issue_start>",
|
27 |
+
"<issue_comment>",
|
28 |
+
"<issue_closed>",
|
29 |
+
"<jupyter_start>",
|
30 |
+
"<jupyter_text>",
|
31 |
+
"<jupyter_code>",
|
32 |
+
"<jupyter_output>",
|
33 |
+
"<jupyter_script>",
|
34 |
+
"<empty_output>",
|
35 |
+
"<code_to_intermediate>",
|
36 |
+
"<intermediate_to_code>",
|
37 |
+
"<pr>",
|
38 |
+
"<pr_status>",
|
39 |
+
"<pr_is_merged>",
|
40 |
+
"<pr_base>",
|
41 |
+
"<pr_file>",
|
42 |
+
"<pr_base_code>",
|
43 |
+
"<pr_diff>",
|
44 |
+
"<pr_diff_hunk>",
|
45 |
+
"<pr_comment>",
|
46 |
+
"<pr_event_id>",
|
47 |
+
"<pr_review>",
|
48 |
+
"<pr_review_state>",
|
49 |
+
"<pr_review_comment>",
|
50 |
+
"<pr_in_reply_to_review_id>",
|
51 |
+
"<pr_in_reply_to_comment_id>",
|
52 |
+
"<pr_diff_hunk_comment_line>",
|
53 |
+
"<NAME>",
|
54 |
+
"<EMAIL>",
|
55 |
+
"<KEY>",
|
56 |
+
"<PASSWORD>"
|
57 |
+
],
|
58 |
+
"bos_token": {
|
59 |
+
"content": "<|endoftext|>",
|
60 |
+
"lstrip": false,
|
61 |
+
"normalized": false,
|
62 |
+
"rstrip": false,
|
63 |
+
"single_word": false
|
64 |
+
},
|
65 |
+
"eos_token": {
|
66 |
+
"content": "<|endoftext|>",
|
67 |
+
"lstrip": false,
|
68 |
+
"normalized": false,
|
69 |
+
"rstrip": false,
|
70 |
+
"single_word": false
|
71 |
+
},
|
72 |
+
"pad_token": {
|
73 |
+
"content": "<|endoftext|>",
|
74 |
+
"lstrip": false,
|
75 |
+
"normalized": false,
|
76 |
+
"rstrip": false,
|
77 |
+
"single_word": false
|
78 |
+
},
|
79 |
+
"unk_token": {
|
80 |
+
"content": "<|endoftext|>",
|
81 |
+
"lstrip": false,
|
82 |
+
"normalized": false,
|
83 |
+
"rstrip": false,
|
84 |
+
"single_word": false
|
85 |
+
}
|
86 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"100256": {
|
5 |
+
"content": "<|_unuse_missing_100256|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"100257": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"100258": {
|
21 |
+
"content": "<|fim_prefix|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"100259": {
|
29 |
+
"content": "<|fim_middle|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"100260": {
|
37 |
+
"content": "<|fim_suffix|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"100261": {
|
45 |
+
"content": "<|_unuse_missing_100261|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"100262": {
|
53 |
+
"content": "<|_unuse_missing_100262|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"100263": {
|
61 |
+
"content": "<|_unuse_missing_100263|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"100264": {
|
69 |
+
"content": "<|_unuse_missing_100264|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"100265": {
|
77 |
+
"content": "<|_unuse_missing_100265|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"100266": {
|
85 |
+
"content": "<|_unuse_missing_100266|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"100267": {
|
93 |
+
"content": "<|_unuse_missing_100267|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"100268": {
|
101 |
+
"content": "<|_unuse_missing_100268|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"100269": {
|
109 |
+
"content": "<|_unuse_missing_100269|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"100270": {
|
117 |
+
"content": "<|_unuse_missing_100270|>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"100271": {
|
125 |
+
"content": "<|_unuse_missing_100271|>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"100272": {
|
133 |
+
"content": "<|im_start|>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"100273": {
|
141 |
+
"content": "<|im_end|>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"100274": {
|
149 |
+
"content": "<|stop|>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"100275": {
|
157 |
+
"content": "<|endofturn|>",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"100276": {
|
165 |
+
"content": "<|endofprompt|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"110491": {
|
173 |
+
"content": "<repo_name>",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"110492": {
|
181 |
+
"content": "<file_sep>",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"110493": {
|
189 |
+
"content": "<issue_start>",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"110494": {
|
197 |
+
"content": "<issue_comment>",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"110495": {
|
205 |
+
"content": "<issue_closed>",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"110496": {
|
213 |
+
"content": "<jupyter_start>",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"110497": {
|
221 |
+
"content": "<jupyter_text>",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"110498": {
|
229 |
+
"content": "<jupyter_code>",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"110499": {
|
237 |
+
"content": "<jupyter_output>",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"110500": {
|
245 |
+
"content": "<jupyter_script>",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"110501": {
|
253 |
+
"content": "<empty_output>",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"110502": {
|
261 |
+
"content": "<code_to_intermediate>",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"110503": {
|
269 |
+
"content": "<intermediate_to_code>",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"110504": {
|
277 |
+
"content": "<pr>",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"110505": {
|
285 |
+
"content": "<pr_status>",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"110506": {
|
293 |
+
"content": "<pr_is_merged>",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"110507": {
|
301 |
+
"content": "<pr_base>",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"110508": {
|
309 |
+
"content": "<pr_file>",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"110509": {
|
317 |
+
"content": "<pr_base_code>",
|
318 |
+
"lstrip": false,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": false,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"110510": {
|
325 |
+
"content": "<pr_diff>",
|
326 |
+
"lstrip": false,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": false,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"110511": {
|
333 |
+
"content": "<pr_diff_hunk>",
|
334 |
+
"lstrip": false,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": false,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"110512": {
|
341 |
+
"content": "<pr_comment>",
|
342 |
+
"lstrip": false,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": false,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"110513": {
|
349 |
+
"content": "<pr_event_id>",
|
350 |
+
"lstrip": false,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": false,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"110514": {
|
357 |
+
"content": "<pr_review>",
|
358 |
+
"lstrip": false,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": false,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"110515": {
|
365 |
+
"content": "<pr_review_state>",
|
366 |
+
"lstrip": false,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": false,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"110516": {
|
373 |
+
"content": "<pr_review_comment>",
|
374 |
+
"lstrip": false,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": false,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"110517": {
|
381 |
+
"content": "<pr_in_reply_to_review_id>",
|
382 |
+
"lstrip": false,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": false,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"110518": {
|
389 |
+
"content": "<pr_in_reply_to_comment_id>",
|
390 |
+
"lstrip": false,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": false,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"110519": {
|
397 |
+
"content": "<pr_diff_hunk_comment_line>",
|
398 |
+
"lstrip": false,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": false,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"110520": {
|
405 |
+
"content": "<NAME>",
|
406 |
+
"lstrip": false,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": false,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"110521": {
|
413 |
+
"content": "<EMAIL>",
|
414 |
+
"lstrip": false,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": false,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"110522": {
|
421 |
+
"content": "<KEY>",
|
422 |
+
"lstrip": false,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": false,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"110523": {
|
429 |
+
"content": "<PASSWORD>",
|
430 |
+
"lstrip": false,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": false,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
}
|
436 |
+
},
|
437 |
+
"additional_special_tokens": [
|
438 |
+
"<|endoftext|>",
|
439 |
+
"<|fim_prefix|>",
|
440 |
+
"<|fim_middle|>",
|
441 |
+
"<|fim_suffix|>",
|
442 |
+
"<|endofprompt|>",
|
443 |
+
"<|_unuse_missing_100256|>",
|
444 |
+
"<|_unuse_missing_100261|>",
|
445 |
+
"<|_unuse_missing_100262|>",
|
446 |
+
"<|_unuse_missing_100263|>",
|
447 |
+
"<|_unuse_missing_100264|>",
|
448 |
+
"<|_unuse_missing_100265|>",
|
449 |
+
"<|_unuse_missing_100266|>",
|
450 |
+
"<|_unuse_missing_100267|>",
|
451 |
+
"<|_unuse_missing_100268|>",
|
452 |
+
"<|_unuse_missing_100269|>",
|
453 |
+
"<|_unuse_missing_100270|>",
|
454 |
+
"<|_unuse_missing_100271|>",
|
455 |
+
"<|im_start|>",
|
456 |
+
"<|im_end|>",
|
457 |
+
"<|stop|>",
|
458 |
+
"<|endofturn|>",
|
459 |
+
"<repo_name>",
|
460 |
+
"<file_sep>",
|
461 |
+
"<issue_start>",
|
462 |
+
"<issue_comment>",
|
463 |
+
"<issue_closed>",
|
464 |
+
"<jupyter_start>",
|
465 |
+
"<jupyter_text>",
|
466 |
+
"<jupyter_code>",
|
467 |
+
"<jupyter_output>",
|
468 |
+
"<jupyter_script>",
|
469 |
+
"<empty_output>",
|
470 |
+
"<code_to_intermediate>",
|
471 |
+
"<intermediate_to_code>",
|
472 |
+
"<pr>",
|
473 |
+
"<pr_status>",
|
474 |
+
"<pr_is_merged>",
|
475 |
+
"<pr_base>",
|
476 |
+
"<pr_file>",
|
477 |
+
"<pr_base_code>",
|
478 |
+
"<pr_diff>",
|
479 |
+
"<pr_diff_hunk>",
|
480 |
+
"<pr_comment>",
|
481 |
+
"<pr_event_id>",
|
482 |
+
"<pr_review>",
|
483 |
+
"<pr_review_state>",
|
484 |
+
"<pr_review_comment>",
|
485 |
+
"<pr_in_reply_to_review_id>",
|
486 |
+
"<pr_in_reply_to_comment_id>",
|
487 |
+
"<pr_diff_hunk_comment_line>",
|
488 |
+
"<NAME>",
|
489 |
+
"<EMAIL>",
|
490 |
+
"<KEY>",
|
491 |
+
"<PASSWORD>"
|
492 |
+
],
|
493 |
+
"bos_token": "<|endoftext|>",
|
494 |
+
"chat_template": "{% if tools is not defined or tools is none %}\n {{- '<|im_start|>tool_list\\n<|im_end|>\\n' }}\n{%- else %}\n {{- '<|im_start|>tool_list\\n[' }}\n {%- for tool in tools %}\n {{- '{\"name\": \"' }}\n {{- tool.function.name }}\n {{- '\", ' }}\n {{- '\"description\": \"' }}\n {{- tool.function.description }}\n {{- '\"' }}\n {%- if tool.function.parameters is defined %}\n {{- ', \"parameters\": ' }}\n {{- tool.function.parameters | tojson }}\n {%- endif %}\n {{- '}' }}\n {%- if not loop.last %}\n {{- ', ' }}\n {%- endif %}\n {%- endfor %}\n{{- ']<|im_end|>\\n' }}\n{%- endif %}\n\n{%- set ns = namespace(is_searching=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.is_searching and (message.role == 'user' or message.role == 'tool') %}\n {%- set ns.last_query_index = index %}\n {%- set ns.is_searching = false %}\n {%- endif %}\n{%- endfor %}\n\n{%- for message in messages %}\n {%- if loop.index0 == 0 and message.role != 'system' %}\n {{- '<|im_start|>system\\n<|im_end|>\\n' }}\n {%- endif %}\n\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %} \n {%- endif %}\n {%- if message.role == \"assistant\" %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if reasoning_content %}\n {{- '<|im_start|>assistant/think\\n' + reasoning_content.strip('\\n') + '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n\n {%- if content %}\n {{- '<|im_start|>assistant\\n' + content.strip('\\n') + '<|im_end|>' }}\n {%- if message.tool_calls %}\n {{- '\\n' }}\n {%- else %}\n {{- '<|endofturn|>\\n' }}\n {%- endif %}\n {%- endif %}\n\n {%- if message.tool_calls %}\n {{- '<|im_start|>assistant -> tool/function_call\\n[' }}\n {%- for tool_call in message.tool_calls %}\n {%- if not loop.first %}\n {{- ', ' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}' }}\n {%- endfor %}\n {{- ']<|im_end|><|stop|>\\n' }}\n\n {%- endif %}\n {%- elif message.role == \"tool\" %}\n {{- '<|im_start|>tool/function_call\\n' + content + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {%- if force_reasoning is defined and force_reasoning is true %}\n {{- '<|im_start|>assistant/think\\n' }}\n {%- elif skip_reasoning is defined and skip_reasoning is true %}\n {{- '<|im_start|>assistant\\n' }}\n {%- else %}\n {{- '<|im_start|>assistant' }}\n {%- endif %}\n{%- endif %}",
|
495 |
+
"clean_up_tokenization_spaces": true,
|
496 |
+
"eos_token": "<|endoftext|>",
|
497 |
+
"model_max_length": 1000000000000000019884624838656,
|
498 |
+
"pad_token": "<|endoftext|>",
|
499 |
+
"tokenizer_class": "GPT2Tokenizer",
|
500 |
+
"unk_token": "<|endoftext|>"
|
501 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|