hyperclovax commited on
Commit
24ffcad
·
verified ·
1 Parent(s): bc3c28a

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<EMAIL>": 110521,
3
+ "<KEY>": 110522,
4
+ "<NAME>": 110520,
5
+ "<PASSWORD>": 110523,
6
+ "<code_to_intermediate>": 110502,
7
+ "<empty_output>": 110501,
8
+ "<file_sep>": 110492,
9
+ "<intermediate_to_code>": 110503,
10
+ "<issue_closed>": 110495,
11
+ "<issue_comment>": 110494,
12
+ "<issue_start>": 110493,
13
+ "<jupyter_code>": 110498,
14
+ "<jupyter_output>": 110499,
15
+ "<jupyter_script>": 110500,
16
+ "<jupyter_start>": 110496,
17
+ "<jupyter_text>": 110497,
18
+ "<pr>": 110504,
19
+ "<pr_base>": 110507,
20
+ "<pr_base_code>": 110509,
21
+ "<pr_comment>": 110512,
22
+ "<pr_diff>": 110510,
23
+ "<pr_diff_hunk>": 110511,
24
+ "<pr_diff_hunk_comment_line>": 110519,
25
+ "<pr_event_id>": 110513,
26
+ "<pr_file>": 110508,
27
+ "<pr_in_reply_to_comment_id>": 110518,
28
+ "<pr_in_reply_to_review_id>": 110517,
29
+ "<pr_is_merged>": 110506,
30
+ "<pr_review>": 110514,
31
+ "<pr_review_comment>": 110516,
32
+ "<pr_review_state>": 110515,
33
+ "<pr_status>": 110505,
34
+ "<repo_name>": 110491
35
+ }
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HyperCLOVAXForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_multiplier": 0.0078125,
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
11
+ "AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
12
+ "AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
13
+ },
14
+ "bos_token_id": 100257,
15
+ "embd_pdrop": 0.0,
16
+ "embedding_multiplier": 10.0,
17
+ "end_token_id": 100257,
18
+ "eos_token_id": 100257,
19
+ "head_dim": 128,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 6144,
22
+ "initializer_range": 0.012727922061357854,
23
+ "intermediate_size": 14336,
24
+ "logits_scaling": 0.125,
25
+ "max_position_embeddings": 131072,
26
+ "mlp_bias": false,
27
+ "model_type": "hyperclovax",
28
+ "num_attention_heads": 48,
29
+ "num_hidden_layers": 38,
30
+ "num_key_value_heads": 8,
31
+ "pad_token_id": 100257,
32
+ "pretraining_tp": 1,
33
+ "resid_pdrop": 0.0,
34
+ "residual_multiplier": 1.0,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 100000000,
38
+ "summary_first_dropout": 0.0,
39
+ "tie_word_embeddings": false,
40
+ "torch_dtype": "float32",
41
+ "transformers_version": "4.52.4",
42
+ "use_cache": false,
43
+ "use_post_norm": true,
44
+ "vocab_size": 110592
45
+ }
configuration_hyperclovax.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # This file was created for the HyperCLOVA X SEED 14B Think architecture.
3
+ # partially copied and modified from https://github.com/huggingface/transformers
4
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
7
+ # and OPT implementations in this library. It has been modified from its
8
+ # original forms to accommodate minor architectural differences compared
9
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ """HyperCLOVAX model configuration"""
23
+
24
+ from transformers.configuration_utils import PretrainedConfig
25
+
26
+ class HyperCLOVAXConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`HyperCLOVAXModel`]. It is used to instantiate an HyperCLOVAX
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the HyperCLOVAX.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the HyperCLOVAX model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`HyperCLOVAXModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ pad_token_id (`int`, *optional*):
68
+ Padding token id.
69
+ bos_token_id (`int`, *optional*, defaults to 1):
70
+ Beginning of stream token id.
71
+ eos_token_id (`int`, *optional*, defaults to 2):
72
+ End of stream token id.
73
+ pretraining_tp (`int`, *optional*, defaults to 1):
74
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
75
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
76
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
77
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ rope_scaling (`Dict`, *optional*):
83
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
84
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
85
+ accordingly.
86
+ Expected contents:
87
+ `rope_type` (`str`):
88
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
89
+ 'llama3'], with 'default' being the original RoPE implementation.
90
+ `factor` (`float`, *optional*):
91
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
92
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
93
+ original maximum pre-trained length.
94
+ `original_max_position_embeddings` (`int`, *optional*):
95
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
96
+ pretraining.
97
+ `attention_factor` (`float`, *optional*):
98
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
99
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
100
+ `factor` field to infer the suggested value.
101
+ `beta_fast` (`float`, *optional*):
102
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
103
+ ramp function. If unspecified, it defaults to 32.
104
+ `beta_slow` (`float`, *optional*):
105
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
106
+ ramp function. If unspecified, it defaults to 1.
107
+ `short_factor` (`List[float]`, *optional*):
108
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
109
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
110
+ size divided by the number of attention heads divided by 2
111
+ `long_factor` (`List[float]`, *optional*):
112
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
113
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
114
+ size divided by the number of attention heads divided by 2
115
+ `low_freq_factor` (`float`, *optional*):
116
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
117
+ `high_freq_factor` (`float`, *optional*):
118
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
119
+ attention_bias (`bool`, *optional*, defaults to `False`):
120
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
121
+ attention_dropout (`float`, *optional*, defaults to 0.0):
122
+ The dropout ratio for the attention probabilities.
123
+ mlp_bias (`bool`, *optional*, defaults to `False`):
124
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
125
+ head_dim (`int`, *optional*):
126
+ The attention head dimension. If None, it will default to hidden_size // num_heads
127
+ embedding_multiplier (`float, *optional*, defaults to `None`):
128
+ Multiplier applied to the embedding weights. If `None`, it is equivalent to `1.0`.
129
+ logits_scaling (`float, *optional*, defaults to `None`):
130
+ Scaling factor for logits. If `None`, it is equivalent to `1.0`.
131
+ attention_multiplier (`float, *optional*, defaults to `None`):
132
+ Multiplier applied to the attention weights. If `None`, it is equivalent to `self.head_dim ** -0.5`.
133
+ residual_multiplier (`float, *optional*, defaults to `None`):
134
+ Scaling factor for residual connections. If `None`, it is equivalent to `1.0`.
135
+ use_post_norm (`bool`, *optional*, defaults to `False`):
136
+ Determines whether to apply Peri-Layer Normalization. Set to True to enable this feature.
137
+
138
+ ```python
139
+ >>> from transformers import HyperCLOVAXModel, HyperCLOVAXConfig
140
+
141
+ >>> # Initializing a HyperCLOVAX HyperCLOVAX style configuration
142
+ >>> configuration = HyperCLOVAXConfig()
143
+
144
+ >>> # Initializing a model from the HyperCLOVAX style configuration
145
+ >>> model = HyperCLOVAXModel(configuration)
146
+
147
+ >>> # Accessing the model configuration
148
+ >>> configuration = model.config
149
+ ```"""
150
+
151
+ model_type = "hyperclovax"
152
+ keys_to_ignore_at_inference = ["past_key_values"]
153
+
154
+ def __init__(
155
+ self,
156
+ vocab_size=32000,
157
+ hidden_size=4096,
158
+ intermediate_size=11008,
159
+ num_hidden_layers=32,
160
+ num_attention_heads=32,
161
+ num_key_value_heads=None,
162
+ hidden_act="silu",
163
+ max_position_embeddings=2048,
164
+ initializer_range=0.02,
165
+ rms_norm_eps=1e-6,
166
+ use_cache=True,
167
+ pad_token_id=None,
168
+ bos_token_id=1,
169
+ eos_token_id=2,
170
+ pretraining_tp=1,
171
+ tie_word_embeddings=False,
172
+ rope_theta=10000.0,
173
+ rope_scaling=None,
174
+ attention_bias=False,
175
+ attention_dropout=0.0,
176
+ mlp_bias=False,
177
+ head_dim=None,
178
+ embedding_multiplier=None, # MuP
179
+ logits_scaling=None, # MuP
180
+ attention_multiplier=None, # MuP
181
+ residual_multiplier=None, # MuP
182
+ use_post_norm=False, # Peri-LN (post-norm)
183
+ auto_map={
184
+ "AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
185
+ "AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
186
+ "AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
187
+ },
188
+ **kwargs,
189
+ ):
190
+ self.vocab_size = vocab_size
191
+ self.max_position_embeddings = max_position_embeddings
192
+ self.hidden_size = hidden_size
193
+ self.intermediate_size = intermediate_size
194
+ self.num_hidden_layers = num_hidden_layers
195
+ self.num_attention_heads = num_attention_heads
196
+
197
+ # for backward compatibility
198
+ if num_key_value_heads is None:
199
+ num_key_value_heads = num_attention_heads
200
+
201
+ self.num_key_value_heads = num_key_value_heads
202
+ self.hidden_act = hidden_act
203
+ self.initializer_range = initializer_range
204
+ self.rms_norm_eps = rms_norm_eps
205
+ self.pretraining_tp = pretraining_tp
206
+ self.use_cache = use_cache
207
+ self.rope_theta = rope_theta
208
+ self.rope_scaling = rope_scaling
209
+ self.attention_bias = attention_bias
210
+ self.attention_dropout = attention_dropout
211
+ self.mlp_bias = mlp_bias
212
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
213
+ # Validate the correctness of rotary position embeddings parameters
214
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
215
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
216
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
217
+ # rope_config_validation(self)
218
+
219
+ # MuP
220
+ self.embedding_multiplier = embedding_multiplier if embedding_multiplier is not None else 1.0
221
+ self.logits_scaling = logits_scaling if logits_scaling is not None else 1.0
222
+ self.attention_multiplier = attention_multiplier if attention_multiplier is not None else self.head_dim ** -0.5
223
+ self.residual_multiplier = residual_multiplier if residual_multiplier is not None else 1.0
224
+
225
+ # Peri-LN (post-norm)
226
+ self.use_post_norm = use_post_norm
227
+
228
+ super().__init__(
229
+ pad_token_id=pad_token_id,
230
+ bos_token_id=bos_token_id,
231
+ eos_token_id=eos_token_id,
232
+ tie_word_embeddings=tie_word_embeddings,
233
+ auto_map=auto_map,
234
+ **kwargs,
235
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100257,
4
+ "eos_token_id": 100257,
5
+ "pad_token_id": 100257,
6
+ "transformers_version": "4.52.4",
7
+ "use_cache": false
8
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:305362a08287f1a07c8901b17569030003342501439732b35372f141488e624d
3
+ size 4831938472
model-00002-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff239283211a4d509ae03a47d26eb81981a1e6629b8593e7fea6f7bc982cc7ee
3
+ size 4932899128
model-00003-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a87408267364edb5e0ad365c01d33272ecd767eef3a59dcae20b5c4e2b80d2d9
3
+ size 4932800744
model-00004-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34be38a9cd94474e2145567c0d8d8e772e38811a6b7cc7ff21ad32b78cd82e28
3
+ size 4932899160
model-00005-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04b93ef8634259a055d34eda87bc7f0c07493be1729979da93c7fd0b63b4cfc8
3
+ size 4932800784
model-00006-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0166c99db8788a872fe9677d88095116586807e61466caeffb1b317815025485
3
+ size 4932899168
model-00007-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3091a6c988544d07a79a12ac4e6327d0b80802af7463f657fa55706760a7b16
3
+ size 4932800784
model-00008-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:437804c0b8b0ac88e24253304a7c0d27c0e94ee54fdba2d6b6474f0fcfd71f77
3
+ size 4932899168
model-00009-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bae7aa1fb3ec4ac0d8a9046a15b8674d80b1165ec423b66c3429416846bd076
3
+ size 4932800784
model-00010-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ec60ba7881c3afa594a584bde88d806582eab0f7768a70549d377b06544c27
3
+ size 4932899168
model-00011-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c2e182da134b1702e84be4f6bff0157182bb8870963b470da45acc4fd9102f5
3
+ size 4932800784
model-00012-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ced46cb6d54cc2ace518803b1d350211b110560a7d841412b61d22b09f55e
3
+ size 4832061536
model.safetensors.index.json ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 58992451584
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00012-of-00012.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00012.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00012.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00012.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00012.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00012.safetensors",
13
+ "model.layers.0.post_norm1.weight": "model-00001-of-00012.safetensors",
14
+ "model.layers.0.post_norm2.weight": "model-00001-of-00012.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00012.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00012.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00012.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00012.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00012.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
24
+ "model.layers.1.post_norm1.weight": "model-00002-of-00012.safetensors",
25
+ "model.layers.1.post_norm2.weight": "model-00002-of-00012.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00012.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00012.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00012.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00012.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00004-of-00012.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
35
+ "model.layers.10.post_norm1.weight": "model-00004-of-00012.safetensors",
36
+ "model.layers.10.post_norm2.weight": "model-00004-of-00012.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00012.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
46
+ "model.layers.11.post_norm1.weight": "model-00004-of-00012.safetensors",
47
+ "model.layers.11.post_norm2.weight": "model-00004-of-00012.safetensors",
48
+ "model.layers.11.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
49
+ "model.layers.11.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00012.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
57
+ "model.layers.12.post_norm1.weight": "model-00005-of-00012.safetensors",
58
+ "model.layers.12.post_norm2.weight": "model-00005-of-00012.safetensors",
59
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
60
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00005-of-00012.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
68
+ "model.layers.13.post_norm1.weight": "model-00005-of-00012.safetensors",
69
+ "model.layers.13.post_norm2.weight": "model-00005-of-00012.safetensors",
70
+ "model.layers.13.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00005-of-00012.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
79
+ "model.layers.14.post_norm1.weight": "model-00005-of-00012.safetensors",
80
+ "model.layers.14.post_norm2.weight": "model-00005-of-00012.safetensors",
81
+ "model.layers.14.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
82
+ "model.layers.14.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00012.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
90
+ "model.layers.15.post_norm1.weight": "model-00006-of-00012.safetensors",
91
+ "model.layers.15.post_norm2.weight": "model-00006-of-00012.safetensors",
92
+ "model.layers.15.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
93
+ "model.layers.15.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00006-of-00012.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
101
+ "model.layers.16.post_norm1.weight": "model-00006-of-00012.safetensors",
102
+ "model.layers.16.post_norm2.weight": "model-00006-of-00012.safetensors",
103
+ "model.layers.16.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
104
+ "model.layers.16.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00006-of-00012.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
112
+ "model.layers.17.post_norm1.weight": "model-00006-of-00012.safetensors",
113
+ "model.layers.17.post_norm2.weight": "model-00006-of-00012.safetensors",
114
+ "model.layers.17.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
115
+ "model.layers.17.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00006-of-00012.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
123
+ "model.layers.18.post_norm1.weight": "model-00006-of-00012.safetensors",
124
+ "model.layers.18.post_norm2.weight": "model-00006-of-00012.safetensors",
125
+ "model.layers.18.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
126
+ "model.layers.18.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00007-of-00012.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
134
+ "model.layers.19.post_norm1.weight": "model-00007-of-00012.safetensors",
135
+ "model.layers.19.post_norm2.weight": "model-00007-of-00012.safetensors",
136
+ "model.layers.19.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
137
+ "model.layers.19.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00012.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
145
+ "model.layers.2.post_norm1.weight": "model-00002-of-00012.safetensors",
146
+ "model.layers.2.post_norm2.weight": "model-00002-of-00012.safetensors",
147
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
148
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00007-of-00012.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
156
+ "model.layers.20.post_norm1.weight": "model-00007-of-00012.safetensors",
157
+ "model.layers.20.post_norm2.weight": "model-00007-of-00012.safetensors",
158
+ "model.layers.20.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
159
+ "model.layers.20.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00007-of-00012.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
167
+ "model.layers.21.post_norm1.weight": "model-00007-of-00012.safetensors",
168
+ "model.layers.21.post_norm2.weight": "model-00007-of-00012.safetensors",
169
+ "model.layers.21.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
170
+ "model.layers.21.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00008-of-00012.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
178
+ "model.layers.22.post_norm1.weight": "model-00008-of-00012.safetensors",
179
+ "model.layers.22.post_norm2.weight": "model-00008-of-00012.safetensors",
180
+ "model.layers.22.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
181
+ "model.layers.22.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00008-of-00012.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
189
+ "model.layers.23.post_norm1.weight": "model-00008-of-00012.safetensors",
190
+ "model.layers.23.post_norm2.weight": "model-00008-of-00012.safetensors",
191
+ "model.layers.23.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
192
+ "model.layers.23.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00008-of-00012.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
200
+ "model.layers.24.post_norm1.weight": "model-00008-of-00012.safetensors",
201
+ "model.layers.24.post_norm2.weight": "model-00008-of-00012.safetensors",
202
+ "model.layers.24.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
203
+ "model.layers.24.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00008-of-00012.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
211
+ "model.layers.25.post_norm1.weight": "model-00008-of-00012.safetensors",
212
+ "model.layers.25.post_norm2.weight": "model-00008-of-00012.safetensors",
213
+ "model.layers.25.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
214
+ "model.layers.25.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00009-of-00012.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
222
+ "model.layers.26.post_norm1.weight": "model-00009-of-00012.safetensors",
223
+ "model.layers.26.post_norm2.weight": "model-00009-of-00012.safetensors",
224
+ "model.layers.26.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
225
+ "model.layers.26.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00009-of-00012.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
233
+ "model.layers.27.post_norm1.weight": "model-00009-of-00012.safetensors",
234
+ "model.layers.27.post_norm2.weight": "model-00009-of-00012.safetensors",
235
+ "model.layers.27.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
236
+ "model.layers.27.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00009-of-00012.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
244
+ "model.layers.28.post_norm1.weight": "model-00009-of-00012.safetensors",
245
+ "model.layers.28.post_norm2.weight": "model-00009-of-00012.safetensors",
246
+ "model.layers.28.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
247
+ "model.layers.28.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00010-of-00012.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
255
+ "model.layers.29.post_norm1.weight": "model-00010-of-00012.safetensors",
256
+ "model.layers.29.post_norm2.weight": "model-00010-of-00012.safetensors",
257
+ "model.layers.29.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
258
+ "model.layers.29.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00012.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
266
+ "model.layers.3.post_norm1.weight": "model-00002-of-00012.safetensors",
267
+ "model.layers.3.post_norm2.weight": "model-00002-of-00012.safetensors",
268
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
269
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00010-of-00012.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
277
+ "model.layers.30.post_norm1.weight": "model-00010-of-00012.safetensors",
278
+ "model.layers.30.post_norm2.weight": "model-00010-of-00012.safetensors",
279
+ "model.layers.30.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
280
+ "model.layers.30.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00010-of-00012.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
288
+ "model.layers.31.post_norm1.weight": "model-00010-of-00012.safetensors",
289
+ "model.layers.31.post_norm2.weight": "model-00010-of-00012.safetensors",
290
+ "model.layers.31.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
291
+ "model.layers.31.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00010-of-00012.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
299
+ "model.layers.32.post_norm1.weight": "model-00010-of-00012.safetensors",
300
+ "model.layers.32.post_norm2.weight": "model-00010-of-00012.safetensors",
301
+ "model.layers.32.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
302
+ "model.layers.32.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00011-of-00012.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
310
+ "model.layers.33.post_norm1.weight": "model-00011-of-00012.safetensors",
311
+ "model.layers.33.post_norm2.weight": "model-00011-of-00012.safetensors",
312
+ "model.layers.33.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
313
+ "model.layers.33.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00011-of-00012.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
321
+ "model.layers.34.post_norm1.weight": "model-00011-of-00012.safetensors",
322
+ "model.layers.34.post_norm2.weight": "model-00011-of-00012.safetensors",
323
+ "model.layers.34.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
324
+ "model.layers.34.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00011-of-00012.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
332
+ "model.layers.35.post_norm1.weight": "model-00011-of-00012.safetensors",
333
+ "model.layers.35.post_norm2.weight": "model-00011-of-00012.safetensors",
334
+ "model.layers.35.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
335
+ "model.layers.35.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00012-of-00012.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00012-of-00012.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00012-of-00012.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
343
+ "model.layers.36.post_norm1.weight": "model-00012-of-00012.safetensors",
344
+ "model.layers.36.post_norm2.weight": "model-00012-of-00012.safetensors",
345
+ "model.layers.36.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
346
+ "model.layers.36.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00012-of-00012.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00012-of-00012.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00012-of-00012.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00012-of-00012.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
354
+ "model.layers.37.post_norm1.weight": "model-00012-of-00012.safetensors",
355
+ "model.layers.37.post_norm2.weight": "model-00012-of-00012.safetensors",
356
+ "model.layers.37.self_attn.k_proj.weight": "model-00012-of-00012.safetensors",
357
+ "model.layers.37.self_attn.o_proj.weight": "model-00012-of-00012.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00012-of-00012.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00012-of-00012.safetensors",
360
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00012.safetensors",
361
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
362
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
363
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
364
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
365
+ "model.layers.4.post_norm1.weight": "model-00002-of-00012.safetensors",
366
+ "model.layers.4.post_norm2.weight": "model-00002-of-00012.safetensors",
367
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
368
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
369
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
370
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
371
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00012.safetensors",
372
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
373
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
374
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
375
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
376
+ "model.layers.5.post_norm1.weight": "model-00003-of-00012.safetensors",
377
+ "model.layers.5.post_norm2.weight": "model-00003-of-00012.safetensors",
378
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
379
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
380
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
381
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
382
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00012.safetensors",
383
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
384
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
385
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
386
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
387
+ "model.layers.6.post_norm1.weight": "model-00003-of-00012.safetensors",
388
+ "model.layers.6.post_norm2.weight": "model-00003-of-00012.safetensors",
389
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
390
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
391
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
392
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
393
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00012.safetensors",
394
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
395
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
396
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
397
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
398
+ "model.layers.7.post_norm1.weight": "model-00003-of-00012.safetensors",
399
+ "model.layers.7.post_norm2.weight": "model-00003-of-00012.safetensors",
400
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
401
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
402
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
403
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
404
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00012.safetensors",
405
+ "model.layers.8.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
406
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
407
+ "model.layers.8.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
408
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
409
+ "model.layers.8.post_norm1.weight": "model-00004-of-00012.safetensors",
410
+ "model.layers.8.post_norm2.weight": "model-00004-of-00012.safetensors",
411
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
412
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
413
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
414
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
415
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00012.safetensors",
416
+ "model.layers.9.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
417
+ "model.layers.9.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
418
+ "model.layers.9.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
419
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
420
+ "model.layers.9.post_norm1.weight": "model-00004-of-00012.safetensors",
421
+ "model.layers.9.post_norm2.weight": "model-00004-of-00012.safetensors",
422
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
423
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
424
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
425
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
426
+ "model.norm.weight": "model-00012-of-00012.safetensors"
427
+ }
428
+ }
modeling_hyperclovax.py ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # This file was created for the HyperCLOVA X SEED 14B Think architecture.
3
+ # partially copied and modified from https://github.com/huggingface/transformers
4
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
7
+ # and OPT implementations in this library. It has been modified from its
8
+ # original forms to accommodate minor architectural differences compared
9
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ from typing import Callable, Optional, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache
30
+ from transformers.generation import GenerationMixin
31
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
+ from transformers.integrations import use_kernel_forward_from_hub
33
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
34
+ from transformers.modeling_layers import GradientCheckpointingLayer
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ QuestionAnsweringModelOutput,
39
+ SequenceClassifierOutputWithPast,
40
+ TokenClassifierOutput,
41
+ )
42
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
43
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
44
+ from transformers.processing_utils import Unpack
45
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
46
+ from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
47
+ from .configuration_hyperclovax import HyperCLOVAXConfig
48
+ if is_torch_flex_attn_available():
49
+ from torch.nn.attention.flex_attention import BlockMask
50
+
51
+ from transformers.integrations.flex_attention import make_flex_block_causal_mask
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ @use_kernel_forward_from_hub("RMSNorm")
57
+ class HyperCLOVAXRMSNorm(nn.Module):
58
+ def __init__(self, hidden_size, eps=1e-6):
59
+ """
60
+ HyperCLOVAXRMSNorm is equivalent to T5LayerNorm
61
+ """
62
+ super().__init__()
63
+ self.weight = nn.Parameter(torch.ones(hidden_size))
64
+ self.variance_epsilon = eps
65
+
66
+ def forward(self, hidden_states):
67
+ input_dtype = hidden_states.dtype
68
+ hidden_states = hidden_states.to(torch.float32)
69
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
70
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
71
+ return self.weight * hidden_states.to(input_dtype)
72
+
73
+ def extra_repr(self):
74
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
75
+
76
+ ALL_LAYERNORM_LAYERS.append(HyperCLOVAXRMSNorm)
77
+ class HyperCLOVAXRotaryEmbedding(nn.Module):
78
+ def __init__(self, config: HyperCLOVAXConfig, device=None):
79
+ super().__init__()
80
+ # BC: "rope_type" was originally "type"
81
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
82
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
83
+ else:
84
+ self.rope_type = "default"
85
+ self.max_seq_len_cached = config.max_position_embeddings
86
+ self.original_max_seq_len = config.max_position_embeddings
87
+
88
+ self.config = config
89
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
90
+
91
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
92
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
93
+ self.original_inv_freq = self.inv_freq
94
+
95
+ @torch.no_grad()
96
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
97
+ def forward(self, x, position_ids):
98
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
99
+ position_ids_expanded = position_ids[:, None, :].float()
100
+
101
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
102
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
103
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
104
+ emb = torch.cat((freqs, freqs), dim=-1)
105
+ cos = emb.cos() * self.attention_scaling
106
+ sin = emb.sin() * self.attention_scaling
107
+
108
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
109
+
110
+
111
+ def rotate_half(x):
112
+ """Rotates half the hidden dims of the input."""
113
+ x1 = x[..., : x.shape[-1] // 2]
114
+ x2 = x[..., x.shape[-1] // 2 :]
115
+ return torch.cat((-x2, x1), dim=-1)
116
+
117
+
118
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
119
+ """Applies Rotary Position Embedding to the query and key tensors.
120
+
121
+ Args:
122
+ q (`torch.Tensor`): The query tensor.
123
+ k (`torch.Tensor`): The key tensor.
124
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
125
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
126
+ position_ids (`torch.Tensor`, *optional*):
127
+ Deprecated and unused.
128
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
129
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
130
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
131
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
132
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
133
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
134
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
135
+ Returns:
136
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
137
+ """
138
+ cos = cos.unsqueeze(unsqueeze_dim)
139
+ sin = sin.unsqueeze(unsqueeze_dim)
140
+ q_embed = (q * cos) + (rotate_half(q) * sin)
141
+ k_embed = (k * cos) + (rotate_half(k) * sin)
142
+ return q_embed, k_embed
143
+
144
+
145
+ class HyperCLOVAXMLP(nn.Module):
146
+ def __init__(self, config):
147
+ super().__init__()
148
+ self.config = config
149
+ self.hidden_size = config.hidden_size
150
+ self.intermediate_size = config.intermediate_size
151
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
152
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
153
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
154
+ self.act_fn = ACT2FN[config.hidden_act]
155
+
156
+ def forward(self, x):
157
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
158
+ return down_proj
159
+
160
+
161
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
162
+ """
163
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
164
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
165
+ """
166
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
167
+ if n_rep == 1:
168
+ return hidden_states
169
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
170
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
171
+
172
+
173
+ def eager_attention_forward(
174
+ module: nn.Module,
175
+ query: torch.Tensor,
176
+ key: torch.Tensor,
177
+ value: torch.Tensor,
178
+ attention_mask: Optional[torch.Tensor],
179
+ scaling: float,
180
+ dropout: float = 0.0,
181
+ **kwargs,
182
+ ):
183
+ key_states = repeat_kv(key, module.num_key_value_groups)
184
+ value_states = repeat_kv(value, module.num_key_value_groups)
185
+
186
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
187
+ if attention_mask is not None:
188
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
189
+ attn_weights = attn_weights + causal_mask
190
+
191
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
192
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
193
+ attn_output = torch.matmul(attn_weights, value_states)
194
+ attn_output = attn_output.transpose(1, 2).contiguous()
195
+
196
+ return attn_output, attn_weights
197
+
198
+
199
+ class HyperCLOVAXAttention(nn.Module):
200
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
201
+
202
+ def __init__(self, config: HyperCLOVAXConfig, layer_idx: int):
203
+ super().__init__()
204
+ self.config = config
205
+ self.layer_idx = layer_idx
206
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
207
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
208
+ self.scaling = getattr(config, "attention_multiplier", self.head_dim**-0.5) # MuP
209
+ self.attention_dropout = config.attention_dropout
210
+ self.is_causal = True
211
+
212
+ self.q_proj = nn.Linear(
213
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
214
+ )
215
+ self.k_proj = nn.Linear(
216
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
217
+ )
218
+ self.v_proj = nn.Linear(
219
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
220
+ )
221
+ self.o_proj = nn.Linear(
222
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
223
+ )
224
+
225
+ def forward(
226
+ self,
227
+ hidden_states: torch.Tensor,
228
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
229
+ attention_mask: Optional[torch.Tensor],
230
+ past_key_value: Optional[Cache] = None,
231
+ cache_position: Optional[torch.LongTensor] = None,
232
+ **kwargs: Unpack[FlashAttentionKwargs],
233
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
234
+ input_shape = hidden_states.shape[:-1]
235
+ hidden_shape = (*input_shape, -1, self.head_dim)
236
+
237
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
238
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
239
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
240
+
241
+ cos, sin = position_embeddings
242
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
243
+
244
+ if past_key_value is not None:
245
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
246
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
247
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
248
+
249
+ attention_interface: Callable = eager_attention_forward
250
+
251
+ if self.config._attn_implementation != "eager":
252
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
253
+ logger.warning_once(
254
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
255
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
256
+ )
257
+ else:
258
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
259
+
260
+ attn_output, attn_weights = attention_interface(
261
+ self,
262
+ query_states,
263
+ key_states,
264
+ value_states,
265
+ attention_mask,
266
+ dropout=0.0 if not self.training else self.attention_dropout,
267
+ scaling=self.scaling,
268
+ **kwargs,
269
+ )
270
+
271
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
272
+ attn_output = self.o_proj(attn_output)
273
+ return attn_output, attn_weights
274
+
275
+
276
+ class HyperCLOVAXDecoderLayer(GradientCheckpointingLayer):
277
+ def __init__(self, config: HyperCLOVAXConfig, layer_idx: int):
278
+ super().__init__()
279
+ self.hidden_size = config.hidden_size
280
+
281
+ self.self_attn = HyperCLOVAXAttention(config=config, layer_idx=layer_idx)
282
+
283
+ self.mlp = HyperCLOVAXMLP(config)
284
+ self.input_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
285
+ self.post_attention_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
286
+ self.use_post_norm = getattr(config, "use_post_norm", False)
287
+
288
+ # Peri-LN (post-norm)
289
+ if self.use_post_norm:
290
+ self.post_norm1 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
291
+ self.post_norm2 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
292
+
293
+ self.residual_multiplier = getattr(config, "residual_multiplier", 1.0) # MuP
294
+
295
+ def forward(
296
+ self,
297
+ hidden_states: torch.Tensor,
298
+ attention_mask: Optional[torch.Tensor] = None,
299
+ position_ids: Optional[torch.LongTensor] = None,
300
+ past_key_value: Optional[Cache] = None,
301
+ output_attentions: Optional[bool] = False,
302
+ use_cache: Optional[bool] = False,
303
+ cache_position: Optional[torch.LongTensor] = None,
304
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
305
+ **kwargs: Unpack[FlashAttentionKwargs],
306
+ ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
307
+ residual = hidden_states
308
+ hidden_states = self.input_layernorm(hidden_states)
309
+
310
+ # Self Attention
311
+ hidden_states, self_attn_weights = self.self_attn(
312
+ hidden_states=hidden_states,
313
+ attention_mask=attention_mask,
314
+ position_ids=position_ids,
315
+ past_key_value=past_key_value,
316
+ output_attentions=output_attentions,
317
+ use_cache=use_cache,
318
+ cache_position=cache_position,
319
+ position_embeddings=position_embeddings,
320
+ **kwargs,
321
+ )
322
+
323
+ if self.use_post_norm: # Peri-LN
324
+ hidden_states = self.post_norm1(hidden_states)
325
+
326
+ hidden_states = residual + hidden_states * self.residual_multiplier # MuP
327
+
328
+ # Fully Connected
329
+ residual = hidden_states
330
+ hidden_states = self.post_attention_layernorm(hidden_states)
331
+ hidden_states = self.mlp(hidden_states)
332
+
333
+ if self.use_post_norm: # Peri-LN
334
+ hidden_states = self.post_norm2(hidden_states)
335
+
336
+ hidden_states = residual + hidden_states * self.residual_multiplier # MuP
337
+
338
+ outputs = (hidden_states,)
339
+ if output_attentions:
340
+ outputs += (self_attn_weights,)
341
+
342
+ return outputs
343
+
344
+
345
+ @auto_docstring
346
+ class HyperCLOVAXPreTrainedModel(PreTrainedModel):
347
+ config_class = HyperCLOVAXConfig
348
+ base_model_prefix = "model"
349
+ supports_gradient_checkpointing = True
350
+ _no_split_modules = ["HyperCLOVAXDecoderLayer"]
351
+ _skip_keys_device_placement = ["past_key_values"]
352
+ _supports_flash_attn_2 = True
353
+ _supports_sdpa = True
354
+ _supports_flex_attn = True
355
+ _supports_cache_class = True
356
+ _supports_quantized_cache = True
357
+ _supports_static_cache = True
358
+ _supports_attention_backend = True
359
+
360
+ def _init_weights(self, module):
361
+ std = self.config.initializer_range
362
+ if isinstance(module, nn.Linear):
363
+ module.weight.data.normal_(mean=0.0, std=std)
364
+ if module.bias is not None:
365
+ module.bias.data.zero_()
366
+ elif isinstance(module, nn.Embedding):
367
+ module.weight.data.normal_(mean=0.0, std=std)
368
+ if module.padding_idx is not None:
369
+ module.weight.data[module.padding_idx].zero_()
370
+ elif isinstance(module, HyperCLOVAXRMSNorm):
371
+ module.weight.data.fill_(1.0)
372
+
373
+
374
+ @auto_docstring
375
+ class HyperCLOVAXModel(HyperCLOVAXPreTrainedModel):
376
+ def __init__(self, config: HyperCLOVAXConfig):
377
+ super().__init__(config)
378
+ self.padding_idx = config.pad_token_id
379
+ self.vocab_size = config.vocab_size
380
+
381
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
382
+ self.layers = nn.ModuleList(
383
+ [HyperCLOVAXDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
384
+ )
385
+ self.norm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
386
+ self.rotary_emb = HyperCLOVAXRotaryEmbedding(config=config)
387
+ self.gradient_checkpointing = False
388
+
389
+ # Initialize weights and apply final processing
390
+ self.post_init()
391
+
392
+ # MuP
393
+ self.embedding_multiplier = getattr(config, "embedding_multiplier", 1.0)
394
+
395
+ def get_input_embeddings(self):
396
+ return self.embed_tokens
397
+
398
+ def set_input_embeddings(self, value):
399
+ self.embed_tokens = value
400
+
401
+ @can_return_tuple
402
+ @auto_docstring
403
+ def forward(
404
+ self,
405
+ input_ids: Optional[torch.LongTensor] = None,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_values: Optional[Cache] = None,
409
+ inputs_embeds: Optional[torch.FloatTensor] = None,
410
+ use_cache: Optional[bool] = None,
411
+ output_attentions: Optional[bool] = None,
412
+ output_hidden_states: Optional[bool] = None,
413
+ cache_position: Optional[torch.LongTensor] = None,
414
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
415
+ ) -> BaseModelOutputWithPast:
416
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
417
+ output_hidden_states = (
418
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
419
+ )
420
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
421
+
422
+ if (input_ids is None) ^ (inputs_embeds is not None):
423
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
424
+
425
+ if self.gradient_checkpointing and self.training and use_cache:
426
+ logger.warning_once(
427
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
428
+ )
429
+ use_cache = False
430
+
431
+ # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
432
+ if not isinstance(past_key_values, (type(None), Cache)):
433
+ raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
434
+
435
+ if inputs_embeds is None:
436
+ inputs_embeds = self.embed_tokens(input_ids)
437
+
438
+ inputs_embeds = inputs_embeds * self.embedding_multiplier # MuP
439
+
440
+ if use_cache and past_key_values is None:
441
+ past_key_values = DynamicCache()
442
+
443
+ if cache_position is None:
444
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
445
+ cache_position = torch.arange(
446
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
447
+ )
448
+
449
+ if position_ids is None:
450
+ position_ids = cache_position.unsqueeze(0)
451
+
452
+ causal_mask = self._update_causal_mask(
453
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
454
+ )
455
+
456
+ hidden_states = inputs_embeds
457
+
458
+ # create position embeddings to be shared across the decoder layers
459
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
460
+
461
+ # decoder layers
462
+ all_hidden_states = () if output_hidden_states else None
463
+ all_self_attns = () if output_attentions else None
464
+
465
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
466
+ if output_hidden_states:
467
+ all_hidden_states += (hidden_states,)
468
+
469
+ layer_outputs = decoder_layer(
470
+ hidden_states,
471
+ attention_mask=causal_mask,
472
+ position_ids=position_ids,
473
+ past_key_value=past_key_values,
474
+ output_attentions=output_attentions,
475
+ use_cache=use_cache,
476
+ cache_position=cache_position,
477
+ position_embeddings=position_embeddings,
478
+ **flash_attn_kwargs,
479
+ )
480
+
481
+ hidden_states = layer_outputs[0]
482
+
483
+ if output_attentions:
484
+ all_self_attns += (layer_outputs[1],)
485
+
486
+ hidden_states = self.norm(hidden_states)
487
+
488
+ # add hidden states from the last decoder layer
489
+ if output_hidden_states:
490
+ all_hidden_states += (hidden_states,)
491
+
492
+ return BaseModelOutputWithPast(
493
+ last_hidden_state=hidden_states,
494
+ past_key_values=past_key_values if use_cache else None,
495
+ hidden_states=all_hidden_states,
496
+ attentions=all_self_attns,
497
+ )
498
+
499
+ def _update_causal_mask(
500
+ self,
501
+ attention_mask: Union[torch.Tensor, "BlockMask"],
502
+ input_tensor: torch.Tensor,
503
+ cache_position: torch.Tensor,
504
+ past_key_values: Cache,
505
+ output_attentions: bool = False,
506
+ ):
507
+ if self.config._attn_implementation == "flash_attention_2":
508
+ if attention_mask is not None and (attention_mask == 0.0).any():
509
+ return attention_mask
510
+ return None
511
+ if self.config._attn_implementation == "flex_attention":
512
+ if isinstance(attention_mask, torch.Tensor):
513
+ attention_mask = make_flex_block_causal_mask(attention_mask)
514
+ return attention_mask
515
+
516
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
517
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
518
+ # to infer the attention mask.
519
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
520
+ using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
521
+
522
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
523
+ if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
524
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
525
+ attention_mask,
526
+ inputs_embeds=input_tensor,
527
+ past_key_values_length=past_seen_tokens,
528
+ is_training=self.training,
529
+ ):
530
+ return None
531
+
532
+ dtype = input_tensor.dtype
533
+ sequence_length = input_tensor.shape[1]
534
+ if using_compilable_cache:
535
+ target_length = past_key_values.get_max_cache_shape()
536
+ else:
537
+ target_length = (
538
+ attention_mask.shape[-1]
539
+ if isinstance(attention_mask, torch.Tensor)
540
+ else past_seen_tokens + sequence_length + 1
541
+ )
542
+
543
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
544
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
545
+ attention_mask,
546
+ sequence_length=sequence_length,
547
+ target_length=target_length,
548
+ dtype=dtype,
549
+ cache_position=cache_position,
550
+ batch_size=input_tensor.shape[0],
551
+ )
552
+
553
+ if (
554
+ self.config._attn_implementation == "sdpa"
555
+ and attention_mask is not None
556
+ and attention_mask.device.type in ["cuda", "xpu", "npu"]
557
+ and not output_attentions
558
+ ):
559
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
560
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
561
+ # Details: https://github.com/pytorch/pytorch/issues/110213
562
+ min_dtype = torch.finfo(dtype).min
563
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
564
+
565
+ return causal_mask
566
+
567
+ @staticmethod
568
+ def _prepare_4d_causal_attention_mask_with_cache_position(
569
+ attention_mask: torch.Tensor,
570
+ sequence_length: int,
571
+ target_length: int,
572
+ dtype: torch.dtype,
573
+ cache_position: torch.Tensor,
574
+ batch_size: int,
575
+ **kwargs,
576
+ ):
577
+ """
578
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
579
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
580
+
581
+ Args:
582
+ attention_mask (`torch.Tensor`):
583
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
584
+ `(batch_size, 1, query_length, key_value_length)`.
585
+ sequence_length (`int`):
586
+ The sequence length being processed.
587
+ target_length (`int`):
588
+ The target length: when generating with static cache, the mask should be as long as the static cache,
589
+ to account for the 0 padding, the part of the cache that is not filled yet.
590
+ dtype (`torch.dtype`):
591
+ The dtype to use for the 4D attention mask.
592
+ cache_position (`torch.Tensor`):
593
+ Indices depicting the position of the input sequence tokens in the sequence.
594
+ batch_size (`torch.Tensor`):
595
+ Batch size.
596
+ """
597
+ if attention_mask is not None and attention_mask.dim() == 4:
598
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
599
+ causal_mask = attention_mask
600
+ else:
601
+ min_dtype = torch.finfo(dtype).min
602
+ causal_mask = torch.full(
603
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
604
+ )
605
+ if sequence_length != 1:
606
+ causal_mask = torch.triu(causal_mask, diagonal=1)
607
+ causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
608
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
609
+ if attention_mask is not None:
610
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
611
+ mask_length = attention_mask.shape[-1]
612
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
613
+ causal_mask.device
614
+ )
615
+ padding_mask = padding_mask == 0
616
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
617
+ padding_mask, min_dtype
618
+ )
619
+
620
+ return causal_mask
621
+
622
+
623
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
624
+
625
+
626
+ @auto_docstring
627
+ class HyperCLOVAXForCausalLM(HyperCLOVAXPreTrainedModel, GenerationMixin):
628
+ _tied_weights_keys = ["lm_head.weight"]
629
+ _tp_plan = {"lm_head": "colwise_rep"}
630
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
631
+
632
+ def __init__(self, config):
633
+ super().__init__(config)
634
+ self.model = HyperCLOVAXModel(config)
635
+ self.vocab_size = config.vocab_size
636
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
637
+ self.logits_scaling = getattr(config, "logits_scaling", 1.0)
638
+
639
+ # Initialize weights and apply final processing
640
+ self.post_init()
641
+
642
+ def get_input_embeddings(self):
643
+ return self.model.embed_tokens
644
+
645
+ def set_input_embeddings(self, value):
646
+ self.model.embed_tokens = value
647
+
648
+ def get_output_embeddings(self):
649
+ return self.lm_head
650
+
651
+ def set_output_embeddings(self, new_embeddings):
652
+ self.lm_head = new_embeddings
653
+
654
+ def set_decoder(self, decoder):
655
+ self.model = decoder
656
+
657
+ def get_decoder(self):
658
+ return self.model
659
+
660
+ @can_return_tuple
661
+ @auto_docstring
662
+ def forward(
663
+ self,
664
+ input_ids: Optional[torch.LongTensor] = None,
665
+ attention_mask: Optional[torch.Tensor] = None,
666
+ position_ids: Optional[torch.LongTensor] = None,
667
+ past_key_values: Optional[Cache] = None,
668
+ inputs_embeds: Optional[torch.FloatTensor] = None,
669
+ labels: Optional[torch.LongTensor] = None,
670
+ use_cache: Optional[bool] = None,
671
+ output_attentions: Optional[bool] = None,
672
+ output_hidden_states: Optional[bool] = None,
673
+ cache_position: Optional[torch.LongTensor] = None,
674
+ logits_to_keep: Union[int, torch.Tensor] = 0,
675
+ **kwargs: Unpack[KwargsForCausalLM],
676
+ ) -> CausalLMOutputWithPast:
677
+ r"""
678
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
679
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
680
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
681
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
682
+
683
+ Example:
684
+
685
+ ```python
686
+ >>> from transformers import AutoTokenizer, HyperCLOVAXForCausalLM
687
+
688
+ >>> model = HyperCLOVAXForCausalLM.from_pretrained("naver-hyperclovax/{model_name}")
689
+ >>> tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/{model_name}")
690
+
691
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
692
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
693
+
694
+ >>> # Generate
695
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
696
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
697
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
698
+ ```"""
699
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
700
+ output_hidden_states = (
701
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
702
+ )
703
+
704
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
705
+ outputs: BaseModelOutputWithPast = self.model(
706
+ input_ids=input_ids,
707
+ attention_mask=attention_mask,
708
+ position_ids=position_ids,
709
+ past_key_values=past_key_values,
710
+ inputs_embeds=inputs_embeds,
711
+ use_cache=use_cache,
712
+ output_attentions=output_attentions,
713
+ output_hidden_states=output_hidden_states,
714
+ cache_position=cache_position,
715
+ **kwargs,
716
+ )
717
+
718
+ hidden_states = outputs.last_hidden_state
719
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
720
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
721
+ # MuP
722
+ logits = self.lm_head(hidden_states[:, slice_indices, :]) * self.logits_scaling
723
+
724
+ loss = None
725
+ if labels is not None:
726
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
727
+
728
+ return CausalLMOutputWithPast(
729
+ loss=loss,
730
+ logits=logits,
731
+ past_key_values=outputs.past_key_values,
732
+ hidden_states=outputs.hidden_states,
733
+ attentions=outputs.attentions,
734
+ )
735
+
736
+
737
+ @auto_docstring(
738
+ custom_intro="""
739
+ The HyperCLOVAX Model transformer with a sequence classification head on top (linear layer).
740
+
741
+ [`HyperCLOVAXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
742
+ (e.g. GPT-2) do.
743
+
744
+ Since it does classification on the last token, it requires to know the position of the last token. If a
745
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
746
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
747
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
748
+ each row of the batch).
749
+ """
750
+ )
751
+ class HyperCLOVAXForSequenceClassification(HyperCLOVAXPreTrainedModel):
752
+ def __init__(self, config):
753
+ super().__init__(config)
754
+ self.num_labels = config.num_labels
755
+ self.model = HyperCLOVAXModel(config)
756
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
757
+
758
+ # Initialize weights and apply final processing
759
+ self.post_init()
760
+
761
+ def get_input_embeddings(self):
762
+ return self.model.embed_tokens
763
+
764
+ def set_input_embeddings(self, value):
765
+ self.model.embed_tokens = value
766
+
767
+ @can_return_tuple
768
+ @auto_docstring
769
+ def forward(
770
+ self,
771
+ input_ids: Optional[torch.LongTensor] = None,
772
+ attention_mask: Optional[torch.Tensor] = None,
773
+ position_ids: Optional[torch.LongTensor] = None,
774
+ past_key_values: Optional[Cache] = None,
775
+ inputs_embeds: Optional[torch.FloatTensor] = None,
776
+ labels: Optional[torch.LongTensor] = None,
777
+ use_cache: Optional[bool] = None,
778
+ output_attentions: Optional[bool] = None,
779
+ output_hidden_states: Optional[bool] = None,
780
+ ) -> SequenceClassifierOutputWithPast:
781
+ r"""
782
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
783
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
784
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
785
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
786
+ """
787
+
788
+ transformer_outputs: BaseModelOutputWithPast = self.model(
789
+ input_ids,
790
+ attention_mask=attention_mask,
791
+ position_ids=position_ids,
792
+ past_key_values=past_key_values,
793
+ inputs_embeds=inputs_embeds,
794
+ use_cache=use_cache,
795
+ output_attentions=output_attentions,
796
+ output_hidden_states=output_hidden_states,
797
+ )
798
+ hidden_states = transformer_outputs.last_hidden_state
799
+ logits = self.score(hidden_states)
800
+
801
+ if input_ids is not None:
802
+ batch_size = input_ids.shape[0]
803
+ else:
804
+ batch_size = inputs_embeds.shape[0]
805
+
806
+ if self.config.pad_token_id is None and batch_size != 1:
807
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
808
+ if self.config.pad_token_id is None:
809
+ last_non_pad_token = -1
810
+ elif input_ids is not None:
811
+ # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
812
+ non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
813
+ token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
814
+ last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
815
+ else:
816
+ last_non_pad_token = -1
817
+ logger.warning_once(
818
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
819
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
820
+ )
821
+
822
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
823
+
824
+ loss = None
825
+ if labels is not None:
826
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
827
+
828
+ return SequenceClassifierOutputWithPast(
829
+ loss=loss,
830
+ logits=pooled_logits,
831
+ past_key_values=transformer_outputs.past_key_values,
832
+ hidden_states=transformer_outputs.hidden_states,
833
+ attentions=transformer_outputs.attentions,
834
+ )
835
+
836
+
837
+ @auto_docstring
838
+ class HyperCLOVAXForQuestionAnswering(HyperCLOVAXPreTrainedModel):
839
+ base_model_prefix = "transformer"
840
+
841
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->HyperCLOVAX
842
+ def __init__(self, config):
843
+ super().__init__(config)
844
+ self.transformer = HyperCLOVAXModel(config)
845
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
846
+
847
+ # Initialize weights and apply final processing
848
+ self.post_init()
849
+
850
+ def get_input_embeddings(self):
851
+ return self.transformer.embed_tokens
852
+
853
+ def set_input_embeddings(self, value):
854
+ self.transformer.embed_tokens = value
855
+
856
+ @can_return_tuple
857
+ @auto_docstring
858
+ def forward(
859
+ self,
860
+ input_ids: Optional[torch.LongTensor] = None,
861
+ attention_mask: Optional[torch.Tensor] = None,
862
+ position_ids: Optional[torch.LongTensor] = None,
863
+ past_key_values: Optional[Cache] = None,
864
+ inputs_embeds: Optional[torch.FloatTensor] = None,
865
+ start_positions: Optional[torch.LongTensor] = None,
866
+ end_positions: Optional[torch.LongTensor] = None,
867
+ output_attentions: Optional[bool] = None,
868
+ output_hidden_states: Optional[bool] = None,
869
+ **kwargs,
870
+ ) -> QuestionAnsweringModelOutput:
871
+ outputs: BaseModelOutputWithPast = self.transformer(
872
+ input_ids,
873
+ attention_mask=attention_mask,
874
+ position_ids=position_ids,
875
+ past_key_values=past_key_values,
876
+ inputs_embeds=inputs_embeds,
877
+ output_attentions=output_attentions,
878
+ output_hidden_states=output_hidden_states,
879
+ )
880
+
881
+ sequence_output = outputs.last_hidden_state
882
+
883
+ logits = self.qa_outputs(sequence_output)
884
+ start_logits, end_logits = logits.split(1, dim=-1)
885
+ start_logits = start_logits.squeeze(-1).contiguous()
886
+ end_logits = end_logits.squeeze(-1).contiguous()
887
+
888
+ loss = None
889
+ if start_positions is not None and end_positions is not None:
890
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
891
+
892
+ return QuestionAnsweringModelOutput(
893
+ loss=loss,
894
+ start_logits=start_logits,
895
+ end_logits=end_logits,
896
+ hidden_states=outputs.hidden_states,
897
+ attentions=outputs.attentions,
898
+ )
899
+
900
+
901
+ @auto_docstring
902
+ class HyperCLOVAXForTokenClassification(HyperCLOVAXPreTrainedModel):
903
+ def __init__(self, config):
904
+ super().__init__(config)
905
+ self.num_labels = config.num_labels
906
+ self.model = HyperCLOVAXModel(config)
907
+ if getattr(config, "classifier_dropout", None) is not None:
908
+ classifier_dropout = config.classifier_dropout
909
+ elif getattr(config, "hidden_dropout", None) is not None:
910
+ classifier_dropout = config.hidden_dropout
911
+ else:
912
+ classifier_dropout = 0.1
913
+ self.dropout = nn.Dropout(classifier_dropout)
914
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
915
+
916
+ # Initialize weights and apply final processing
917
+ self.post_init()
918
+
919
+ def get_input_embeddings(self):
920
+ return self.model.embed_tokens
921
+
922
+ def set_input_embeddings(self, value):
923
+ self.model.embed_tokens = value
924
+
925
+ @can_return_tuple
926
+ @auto_docstring
927
+ def forward(
928
+ self,
929
+ input_ids: Optional[torch.LongTensor] = None,
930
+ attention_mask: Optional[torch.Tensor] = None,
931
+ position_ids: Optional[torch.LongTensor] = None,
932
+ past_key_values: Optional[Cache] = None,
933
+ inputs_embeds: Optional[torch.FloatTensor] = None,
934
+ labels: Optional[torch.LongTensor] = None,
935
+ use_cache: Optional[bool] = None,
936
+ output_attentions: Optional[bool] = None,
937
+ output_hidden_states: Optional[bool] = None,
938
+ ) -> TokenClassifierOutput:
939
+ r"""
940
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
941
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
942
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
943
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
944
+ """
945
+
946
+ outputs: BaseModelOutputWithPast = self.model(
947
+ input_ids,
948
+ attention_mask=attention_mask,
949
+ position_ids=position_ids,
950
+ past_key_values=past_key_values,
951
+ inputs_embeds=inputs_embeds,
952
+ use_cache=use_cache,
953
+ output_attentions=output_attentions,
954
+ output_hidden_states=output_hidden_states,
955
+ )
956
+ sequence_output = outputs.last_hidden_state
957
+ sequence_output = self.dropout(sequence_output)
958
+ logits = self.score(sequence_output)
959
+
960
+ loss = None
961
+ if labels is not None:
962
+ loss = self.loss_function(logits, labels, self.config)
963
+
964
+ return TokenClassifierOutput(
965
+ loss=loss,
966
+ logits=logits,
967
+ hidden_states=outputs.hidden_states,
968
+ attentions=outputs.attentions,
969
+ )
970
+
971
+
972
+ __all__ = [
973
+ "HyperCLOVAXForCausalLM",
974
+ "HyperCLOVAXModel",
975
+ "HyperCLOVAXPreTrainedModel",
976
+ "HyperCLOVAXForSequenceClassification",
977
+ "HyperCLOVAXForQuestionAnswering",
978
+ "HyperCLOVAXForTokenClassification",
979
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|fim_prefix|>",
5
+ "<|fim_middle|>",
6
+ "<|fim_suffix|>",
7
+ "<|endofprompt|>",
8
+ "<|_unuse_missing_100256|>",
9
+ "<|_unuse_missing_100261|>",
10
+ "<|_unuse_missing_100262|>",
11
+ "<|_unuse_missing_100263|>",
12
+ "<|_unuse_missing_100264|>",
13
+ "<|_unuse_missing_100265|>",
14
+ "<|_unuse_missing_100266|>",
15
+ "<|_unuse_missing_100267|>",
16
+ "<|_unuse_missing_100268|>",
17
+ "<|_unuse_missing_100269|>",
18
+ "<|_unuse_missing_100270|>",
19
+ "<|_unuse_missing_100271|>",
20
+ "<|im_start|>",
21
+ "<|im_end|>",
22
+ "<|stop|>",
23
+ "<|endofturn|>",
24
+ "<repo_name>",
25
+ "<file_sep>",
26
+ "<issue_start>",
27
+ "<issue_comment>",
28
+ "<issue_closed>",
29
+ "<jupyter_start>",
30
+ "<jupyter_text>",
31
+ "<jupyter_code>",
32
+ "<jupyter_output>",
33
+ "<jupyter_script>",
34
+ "<empty_output>",
35
+ "<code_to_intermediate>",
36
+ "<intermediate_to_code>",
37
+ "<pr>",
38
+ "<pr_status>",
39
+ "<pr_is_merged>",
40
+ "<pr_base>",
41
+ "<pr_file>",
42
+ "<pr_base_code>",
43
+ "<pr_diff>",
44
+ "<pr_diff_hunk>",
45
+ "<pr_comment>",
46
+ "<pr_event_id>",
47
+ "<pr_review>",
48
+ "<pr_review_state>",
49
+ "<pr_review_comment>",
50
+ "<pr_in_reply_to_review_id>",
51
+ "<pr_in_reply_to_comment_id>",
52
+ "<pr_diff_hunk_comment_line>",
53
+ "<NAME>",
54
+ "<EMAIL>",
55
+ "<KEY>",
56
+ "<PASSWORD>"
57
+ ],
58
+ "bos_token": {
59
+ "content": "<|endoftext|>",
60
+ "lstrip": false,
61
+ "normalized": false,
62
+ "rstrip": false,
63
+ "single_word": false
64
+ },
65
+ "eos_token": {
66
+ "content": "<|endoftext|>",
67
+ "lstrip": false,
68
+ "normalized": false,
69
+ "rstrip": false,
70
+ "single_word": false
71
+ },
72
+ "pad_token": {
73
+ "content": "<|endoftext|>",
74
+ "lstrip": false,
75
+ "normalized": false,
76
+ "rstrip": false,
77
+ "single_word": false
78
+ },
79
+ "unk_token": {
80
+ "content": "<|endoftext|>",
81
+ "lstrip": false,
82
+ "normalized": false,
83
+ "rstrip": false,
84
+ "single_word": false
85
+ }
86
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "100256": {
5
+ "content": "<|_unuse_missing_100256|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100257": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "100258": {
21
+ "content": "<|fim_prefix|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "100259": {
29
+ "content": "<|fim_middle|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "100260": {
37
+ "content": "<|fim_suffix|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "100261": {
45
+ "content": "<|_unuse_missing_100261|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "100262": {
53
+ "content": "<|_unuse_missing_100262|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "100263": {
61
+ "content": "<|_unuse_missing_100263|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "100264": {
69
+ "content": "<|_unuse_missing_100264|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "100265": {
77
+ "content": "<|_unuse_missing_100265|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "100266": {
85
+ "content": "<|_unuse_missing_100266|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "100267": {
93
+ "content": "<|_unuse_missing_100267|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "100268": {
101
+ "content": "<|_unuse_missing_100268|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "100269": {
109
+ "content": "<|_unuse_missing_100269|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "100270": {
117
+ "content": "<|_unuse_missing_100270|>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "100271": {
125
+ "content": "<|_unuse_missing_100271|>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "100272": {
133
+ "content": "<|im_start|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "100273": {
141
+ "content": "<|im_end|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "100274": {
149
+ "content": "<|stop|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "100275": {
157
+ "content": "<|endofturn|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "100276": {
165
+ "content": "<|endofprompt|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "110491": {
173
+ "content": "<repo_name>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "110492": {
181
+ "content": "<file_sep>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "110493": {
189
+ "content": "<issue_start>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "110494": {
197
+ "content": "<issue_comment>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "110495": {
205
+ "content": "<issue_closed>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "110496": {
213
+ "content": "<jupyter_start>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "110497": {
221
+ "content": "<jupyter_text>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "110498": {
229
+ "content": "<jupyter_code>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "110499": {
237
+ "content": "<jupyter_output>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "110500": {
245
+ "content": "<jupyter_script>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "110501": {
253
+ "content": "<empty_output>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "110502": {
261
+ "content": "<code_to_intermediate>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "110503": {
269
+ "content": "<intermediate_to_code>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "110504": {
277
+ "content": "<pr>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "110505": {
285
+ "content": "<pr_status>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "110506": {
293
+ "content": "<pr_is_merged>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "110507": {
301
+ "content": "<pr_base>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "110508": {
309
+ "content": "<pr_file>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "110509": {
317
+ "content": "<pr_base_code>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "110510": {
325
+ "content": "<pr_diff>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "110511": {
333
+ "content": "<pr_diff_hunk>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "110512": {
341
+ "content": "<pr_comment>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "110513": {
349
+ "content": "<pr_event_id>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "110514": {
357
+ "content": "<pr_review>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "110515": {
365
+ "content": "<pr_review_state>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "110516": {
373
+ "content": "<pr_review_comment>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "110517": {
381
+ "content": "<pr_in_reply_to_review_id>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "110518": {
389
+ "content": "<pr_in_reply_to_comment_id>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "110519": {
397
+ "content": "<pr_diff_hunk_comment_line>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "110520": {
405
+ "content": "<NAME>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "110521": {
413
+ "content": "<EMAIL>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "110522": {
421
+ "content": "<KEY>",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "110523": {
429
+ "content": "<PASSWORD>",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ }
436
+ },
437
+ "additional_special_tokens": [
438
+ "<|endoftext|>",
439
+ "<|fim_prefix|>",
440
+ "<|fim_middle|>",
441
+ "<|fim_suffix|>",
442
+ "<|endofprompt|>",
443
+ "<|_unuse_missing_100256|>",
444
+ "<|_unuse_missing_100261|>",
445
+ "<|_unuse_missing_100262|>",
446
+ "<|_unuse_missing_100263|>",
447
+ "<|_unuse_missing_100264|>",
448
+ "<|_unuse_missing_100265|>",
449
+ "<|_unuse_missing_100266|>",
450
+ "<|_unuse_missing_100267|>",
451
+ "<|_unuse_missing_100268|>",
452
+ "<|_unuse_missing_100269|>",
453
+ "<|_unuse_missing_100270|>",
454
+ "<|_unuse_missing_100271|>",
455
+ "<|im_start|>",
456
+ "<|im_end|>",
457
+ "<|stop|>",
458
+ "<|endofturn|>",
459
+ "<repo_name>",
460
+ "<file_sep>",
461
+ "<issue_start>",
462
+ "<issue_comment>",
463
+ "<issue_closed>",
464
+ "<jupyter_start>",
465
+ "<jupyter_text>",
466
+ "<jupyter_code>",
467
+ "<jupyter_output>",
468
+ "<jupyter_script>",
469
+ "<empty_output>",
470
+ "<code_to_intermediate>",
471
+ "<intermediate_to_code>",
472
+ "<pr>",
473
+ "<pr_status>",
474
+ "<pr_is_merged>",
475
+ "<pr_base>",
476
+ "<pr_file>",
477
+ "<pr_base_code>",
478
+ "<pr_diff>",
479
+ "<pr_diff_hunk>",
480
+ "<pr_comment>",
481
+ "<pr_event_id>",
482
+ "<pr_review>",
483
+ "<pr_review_state>",
484
+ "<pr_review_comment>",
485
+ "<pr_in_reply_to_review_id>",
486
+ "<pr_in_reply_to_comment_id>",
487
+ "<pr_diff_hunk_comment_line>",
488
+ "<NAME>",
489
+ "<EMAIL>",
490
+ "<KEY>",
491
+ "<PASSWORD>"
492
+ ],
493
+ "bos_token": "<|endoftext|>",
494
+ "chat_template": "{% if tools is not defined or tools is none %}\n {{- '<|im_start|>tool_list\\n<|im_end|>\\n' }}\n{%- else %}\n {{- '<|im_start|>tool_list\\n[' }}\n {%- for tool in tools %}\n {{- '{\"name\": \"' }}\n {{- tool.function.name }}\n {{- '\", ' }}\n {{- '\"description\": \"' }}\n {{- tool.function.description }}\n {{- '\"' }}\n {%- if tool.function.parameters is defined %}\n {{- ', \"parameters\": ' }}\n {{- tool.function.parameters | tojson }}\n {%- endif %}\n {{- '}' }}\n {%- if not loop.last %}\n {{- ', ' }}\n {%- endif %}\n {%- endfor %}\n{{- ']<|im_end|>\\n' }}\n{%- endif %}\n\n{%- set ns = namespace(is_searching=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.is_searching and (message.role == 'user' or message.role == 'tool') %}\n {%- set ns.last_query_index = index %}\n {%- set ns.is_searching = false %}\n {%- endif %}\n{%- endfor %}\n\n{%- for message in messages %}\n {%- if loop.index0 == 0 and message.role != 'system' %}\n {{- '<|im_start|>system\\n<|im_end|>\\n' }}\n {%- endif %}\n\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %} \n {%- endif %}\n {%- if message.role == \"assistant\" %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if reasoning_content %}\n {{- '<|im_start|>assistant/think\\n' + reasoning_content.strip('\\n') + '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n\n {%- if content %}\n {{- '<|im_start|>assistant\\n' + content.strip('\\n') + '<|im_end|>' }}\n {%- if message.tool_calls %}\n {{- '\\n' }}\n {%- else %}\n {{- '<|endofturn|>\\n' }}\n {%- endif %}\n {%- endif %}\n\n {%- if message.tool_calls %}\n {{- '<|im_start|>assistant -> tool/function_call\\n[' }}\n {%- for tool_call in message.tool_calls %}\n {%- if not loop.first %}\n {{- ', ' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}' }}\n {%- endfor %}\n {{- ']<|im_end|><|stop|>\\n' }}\n\n {%- endif %}\n {%- elif message.role == \"tool\" %}\n {{- '<|im_start|>tool/function_call\\n' + content + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {%- if force_reasoning is defined and force_reasoning is true %}\n {{- '<|im_start|>assistant/think\\n' }}\n {%- elif skip_reasoning is defined and skip_reasoning is true %}\n {{- '<|im_start|>assistant\\n' }}\n {%- else %}\n {{- '<|im_start|>assistant' }}\n {%- endif %}\n{%- endif %}",
495
+ "clean_up_tokenization_spaces": true,
496
+ "eos_token": "<|endoftext|>",
497
+ "model_max_length": 1000000000000000019884624838656,
498
+ "pad_token": "<|endoftext|>",
499
+ "tokenizer_class": "GPT2Tokenizer",
500
+ "unk_token": "<|endoftext|>"
501
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff