--- language: en tags: - astronomy - TDAMM - classification - multi-label - NASA - astrophysics --- # TDAMM Multi-Label Classification Model This model performs multi-label classification for Time Domain and Multi-Messenger Astronomy (TDAMM) topics. ## Model Description Base Model: astroBERT Task: Multi-label classification Training Data: NASA and non-NASA documents related to TDAMM topics ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("nasa-impact/tdamm-classification") model = AutoModelForSequenceClassification.from_pretrained("nasa-impact/tdamm-classification") # Prepare input text = "Your astronomical test text here" inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) # Get predictions with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Convert to binary predictions (threshold = 0.5) predictions = (predictions > 0.5).int() ```