Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- run_stok.py +176 -0
- stok-0.3-large.json +3 -0
- stok-0.3.json +3 -0
- stok-tools.py +93 -0
- stokfile.py +49 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
stok-0.3-large.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
stok-0.3.json filter=lfs diff=lfs merge=lfs -text
|
run_stok.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
|
4 |
+
def strip_prompt(prompt): # used to make it more likely for the prompt to be understood
|
5 |
+
newprompt = str(prompt).lower()
|
6 |
+
newprompt = newprompt.replace(".", "")
|
7 |
+
newprompt = newprompt.replace("[", "")
|
8 |
+
newprompt = newprompt.replace("]", "")
|
9 |
+
newprompt = newprompt.replace(":", "")
|
10 |
+
newprompt = newprompt.replace(",", "")
|
11 |
+
newprompt = newprompt.replace("\"", "")
|
12 |
+
newprompt = newprompt.replace("'", "")
|
13 |
+
newprompt = newprompt.replace("/", "")
|
14 |
+
newprompt = newprompt.replace("(", "")
|
15 |
+
newprompt = newprompt.replace(")", "")
|
16 |
+
newprompt = newprompt.replace(";", "")
|
17 |
+
newprompt = newprompt.replace("-", "")
|
18 |
+
newprompt = newprompt.replace("_", "")
|
19 |
+
newprompt = newprompt.replace("{", "")
|
20 |
+
newprompt = newprompt.replace("}", "")
|
21 |
+
newprompt = newprompt.replace("?", "")
|
22 |
+
newprompt = " ".join(newprompt.split(sep=None))
|
23 |
+
return newprompt
|
24 |
+
|
25 |
+
def strip_text(prompt): # kinda wacky overall
|
26 |
+
newprompt = str(prompt).lower()
|
27 |
+
newprompt = " ".join(newprompt.split(sep=None))
|
28 |
+
return newprompt
|
29 |
+
|
30 |
+
model = {"model_data": {}}
|
31 |
+
def load_model(filename: str):
|
32 |
+
model["model_data"] = json.loads(open(filename, "r").read())
|
33 |
+
|
34 |
+
def version_03_inference(prompt: str, max_tokens: int=None, repetition_penalty: int=2):
|
35 |
+
tokens_generated = 0
|
36 |
+
split_prompt = strip_prompt(prompt).split(sep=None)
|
37 |
+
model_data = model["model_data"]
|
38 |
+
outputs = model_data["outputs"]
|
39 |
+
raw_outputs = model_data["raw_outputs"]
|
40 |
+
prompts = model_data["prompts"]
|
41 |
+
ends = model_data["ends"]
|
42 |
+
start = ""
|
43 |
+
topic = None
|
44 |
+
for token in split_prompt:
|
45 |
+
if token in prompts:
|
46 |
+
start = max(prompts[token], key=prompts[token].get)
|
47 |
+
topic = token
|
48 |
+
break
|
49 |
+
if topic == None: # use raw outputs
|
50 |
+
outputs = raw_outputs
|
51 |
+
topic = None
|
52 |
+
start = split_prompt[-1]
|
53 |
+
tokens_generated += 1
|
54 |
+
running = True
|
55 |
+
current_token = [start]
|
56 |
+
while running:
|
57 |
+
token = current_token[0]
|
58 |
+
yield f"{token} "
|
59 |
+
if token in outputs:
|
60 |
+
next_token = max(outputs[token], key=outputs[token].get)
|
61 |
+
outputs[token][next_token] -= repetition_penalty
|
62 |
+
else:
|
63 |
+
next_token = random.choice(list(outputs.keys()))
|
64 |
+
current_token[0] = next_token
|
65 |
+
tokens_generated += 1
|
66 |
+
if max_tokens != None:
|
67 |
+
if tokens_generated >= max_tokens:
|
68 |
+
running = False
|
69 |
+
if topic:
|
70 |
+
if token in ends[topic]:
|
71 |
+
running = False
|
72 |
+
else:
|
73 |
+
tokens_generated += 1
|
74 |
+
running = True
|
75 |
+
current_token = [start]
|
76 |
+
while running:
|
77 |
+
token = current_token[0]
|
78 |
+
yield f"{token} "
|
79 |
+
if outputs.get(topic) != None:
|
80 |
+
if token in outputs[topic]:
|
81 |
+
next_token = max(outputs[topic][token], key=outputs[topic][token].get)
|
82 |
+
outputs[topic][token][next_token] -= repetition_penalty
|
83 |
+
else:
|
84 |
+
next_token = random.choice(list(outputs.keys()))
|
85 |
+
current_token[0] = next_token
|
86 |
+
tokens_generated += 1
|
87 |
+
if max_tokens != None:
|
88 |
+
if tokens_generated >= max_tokens:
|
89 |
+
running = False
|
90 |
+
if topic:
|
91 |
+
if token in ends[topic]:
|
92 |
+
running = False
|
93 |
+
else:
|
94 |
+
running = False # this is because single token responses seem to break things
|
95 |
+
|
96 |
+
def version_02_inference(prompt: str, max_tokens: int=None, repetition_penalty: int=1):
|
97 |
+
tokens_generated = 0
|
98 |
+
split_prompt = strip_prompt(prompt).split(sep=None)
|
99 |
+
model_data = model["model_data"]
|
100 |
+
outputs = model_data["outputs"]
|
101 |
+
prompts = model_data["prompts"]
|
102 |
+
ends = model_data["ends"]
|
103 |
+
start = ""
|
104 |
+
for token in split_prompt:
|
105 |
+
if token in prompts:
|
106 |
+
start = max(prompts[token], key=prompts[token].get)
|
107 |
+
topic = token
|
108 |
+
break
|
109 |
+
else:
|
110 |
+
topic = random.choice(list(ends))
|
111 |
+
start = random.choice(list(prompts.keys()))
|
112 |
+
tokens_generated += 1
|
113 |
+
running = True
|
114 |
+
current_token = [start]
|
115 |
+
while running:
|
116 |
+
token = current_token[0]
|
117 |
+
yield f"{token} "
|
118 |
+
if token in outputs:
|
119 |
+
next_token = max(outputs[token], key=outputs[token].get)
|
120 |
+
outputs[token][next_token] -= repetition_penalty
|
121 |
+
else:
|
122 |
+
next_token = random.choice(list(outputs.keys()))
|
123 |
+
current_token[0] = next_token
|
124 |
+
tokens_generated += 1
|
125 |
+
if max_tokens != None:
|
126 |
+
if tokens_generated >= max_tokens:
|
127 |
+
running = False
|
128 |
+
if topic:
|
129 |
+
if token in ends[topic]:
|
130 |
+
running = False
|
131 |
+
|
132 |
+
def version_01_inference(prompt: str, max_tokens: int=None, repetition_penalty: int=1):
|
133 |
+
tokens_generated = 0
|
134 |
+
split_prompt = strip_prompt(prompt).split(sep=None)
|
135 |
+
model_data = model["model_data"]
|
136 |
+
outputs = model_data["outputs"]
|
137 |
+
prompts = model_data["prompts"]
|
138 |
+
start = ""
|
139 |
+
for token in split_prompt:
|
140 |
+
if token in prompts:
|
141 |
+
start = max(prompts[token], key=prompts[token].get)
|
142 |
+
tokens_generated += 1
|
143 |
+
running = True
|
144 |
+
current_token = [start]
|
145 |
+
while running:
|
146 |
+
token = current_token[0]
|
147 |
+
yield f"{token} "
|
148 |
+
if token in outputs:
|
149 |
+
next_token = max(outputs[token], key=outputs[token].get)
|
150 |
+
outputs[token][next_token] -= repetition_penalty
|
151 |
+
else:
|
152 |
+
next_token = random.choice(list(outputs.keys()))
|
153 |
+
current_token[0] = next_token
|
154 |
+
tokens_generated += 1
|
155 |
+
if max_tokens != None:
|
156 |
+
if tokens_generated >= max_tokens:
|
157 |
+
running = False
|
158 |
+
|
159 |
+
def run_model(prompt: str, max_tokens: int=None, repetition_penalty: int=1, temperature: float=0):
|
160 |
+
# (temperature does not work on versions below 0.3)
|
161 |
+
model_data = model["model_data"]
|
162 |
+
model_format = model_data["format"]
|
163 |
+
if model_data["format"] == "v0.1":
|
164 |
+
response = version_01_inference(prompt, max_tokens=max_tokens, repetition_penalty=repetition_penalty)
|
165 |
+
for chunk in response:
|
166 |
+
yield chunk
|
167 |
+
|
168 |
+
if model_data["format"] == "v0.2":
|
169 |
+
response = version_02_inference(prompt, max_tokens=max_tokens, repetition_penalty=repetition_penalty)
|
170 |
+
for chunk in response:
|
171 |
+
yield chunk
|
172 |
+
|
173 |
+
if model_data["format"] == "v0.3":
|
174 |
+
response = version_03_inference(prompt, max_tokens=max_tokens, repetition_penalty=repetition_penalty)
|
175 |
+
for chunk in response:
|
176 |
+
yield chunk
|
stok-0.3-large.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0586fcdc0d6ef99a76d96d1f45bb02f520b4a9e0a325a882bc87cd8fa95f8b6
|
3 |
+
size 478367292
|
stok-0.3.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b1df825b31947f352a7cae62937842ff1c791a35a534a32bd5d21d6dd93c9cc
|
3 |
+
size 15166112
|
stok-tools.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from math import floor
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
def comma_number(number):
|
7 |
+
number = int(number)
|
8 |
+
ordered_num = list(str(number))
|
9 |
+
ordered_num.reverse()
|
10 |
+
if len(ordered_num) > 3:
|
11 |
+
splits = len(ordered_num)/3
|
12 |
+
splits = floor(splits)
|
13 |
+
start = 0
|
14 |
+
for x in range(0, splits):
|
15 |
+
if start == 0:
|
16 |
+
start += 3
|
17 |
+
else:
|
18 |
+
start += 4
|
19 |
+
ordered_num.insert(start, ",")
|
20 |
+
ordered_num.reverse()
|
21 |
+
if ordered_num[0] == ",":
|
22 |
+
ordered_num.pop(0)
|
23 |
+
return "".join(ordered_num)
|
24 |
+
|
25 |
+
def getSize(filename):
|
26 |
+
st = os.stat(filename)
|
27 |
+
size_in_mb = st.st_size / (1024 * 1024)
|
28 |
+
return size_in_mb
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
if len(sys.argv) > 1:
|
32 |
+
if sys.argv[1] == "help":
|
33 |
+
print("help - shows this command")
|
34 |
+
print("count_parameters <file> - counts parameters of a given model")
|
35 |
+
print("model_size <file> - Shows size of model in MB")
|
36 |
+
print("view_token <file> <token> - Shows a token's data")
|
37 |
+
if sys.argv[1] == "count_parameters":
|
38 |
+
filename = sys.argv[2]
|
39 |
+
model_data = json.loads(open(filename, "r").read())
|
40 |
+
format_version = model_data["format"]
|
41 |
+
|
42 |
+
if format_version == "v0.1" or format_version == "v0.2": # old outputs format
|
43 |
+
total = len(model_data["outputs"])
|
44 |
+
total += len(model_data["prompts"])
|
45 |
+
for output in model_data["outputs"]:
|
46 |
+
total += len(model_data["outputs"][output])
|
47 |
+
for prompt in model_data["prompts"]:
|
48 |
+
total += len(model_data["prompts"][prompt])
|
49 |
+
|
50 |
+
if format_version == "v0.3": # contextualized outputs format
|
51 |
+
total = len(model_data["outputs"])
|
52 |
+
total += len(model_data["prompts"])
|
53 |
+
for topic in model_data["outputs"]:
|
54 |
+
for token in model_data["outputs"][topic]:
|
55 |
+
total += len(model_data["outputs"][topic][token])
|
56 |
+
for prompt in model_data["prompts"]:
|
57 |
+
total += len(model_data["prompts"][prompt])
|
58 |
+
total += len(model_data["raw_outputs"])
|
59 |
+
for output in model_data["raw_outputs"]:
|
60 |
+
total += len(model_data["raw_outputs"][output])
|
61 |
+
|
62 |
+
if format_version == "v0.2" or format_version == "v0.3": # ends is supported in 0.2 and 0.3
|
63 |
+
total += len(model_data["ends"])
|
64 |
+
for topic in model_data["ends"]:
|
65 |
+
total += len(model_data["ends"][topic])
|
66 |
+
|
67 |
+
print(comma_number(total))
|
68 |
+
|
69 |
+
|
70 |
+
if sys.argv[1] == "model_size":
|
71 |
+
filename = sys.argv[2]
|
72 |
+
print(getSize(filename))
|
73 |
+
|
74 |
+
if sys.argv[1] == "view_token":
|
75 |
+
filename = sys.argv[2]
|
76 |
+
token = sys.argv[3]
|
77 |
+
model_data = json.loads(open(filename, "r").read())
|
78 |
+
prompts = model_data["prompts"]
|
79 |
+
outputs = model_data["outputs"]
|
80 |
+
try:
|
81 |
+
input_data = prompts[token]
|
82 |
+
except KeyError:
|
83 |
+
input_data = "NONE FOUND"
|
84 |
+
try:
|
85 |
+
output_data = outputs[token]
|
86 |
+
except KeyError:
|
87 |
+
output_data = "NONE FOUND"
|
88 |
+
print(f"PROMPT DATA: {input_data}")
|
89 |
+
print()
|
90 |
+
print()
|
91 |
+
print(f"OUTPUT DATA: {output_data}")
|
92 |
+
|
93 |
+
|
stokfile.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import run_stok
|
2 |
+
import sys
|
3 |
+
from run_stok import load_model, run_model
|
4 |
+
import time
|
5 |
+
total = []
|
6 |
+
model = "stok-0.3.json"
|
7 |
+
show_speed = False
|
8 |
+
if len(sys.argv) > 1: # it is set up like this to add more parameters in the future
|
9 |
+
if sys.argv[1] == "help":
|
10 |
+
print("help - shows this command")
|
11 |
+
print("-m <model> - specifies the file you want to inference")
|
12 |
+
print("-speed - if added, enables speed logging")
|
13 |
+
args = list(sys.argv)
|
14 |
+
running = True
|
15 |
+
while running:
|
16 |
+
if len(args) < 2:
|
17 |
+
running = False
|
18 |
+
elif args[1] == "-m":
|
19 |
+
model = args[2]
|
20 |
+
args.pop(1)
|
21 |
+
args.pop(1)
|
22 |
+
elif args[1] == "-speed":
|
23 |
+
show_speed = True
|
24 |
+
args.pop(1)
|
25 |
+
else:
|
26 |
+
running = False
|
27 |
+
|
28 |
+
load_model(model)
|
29 |
+
running = True
|
30 |
+
while running:
|
31 |
+
total = []
|
32 |
+
message = input(">>>")
|
33 |
+
if message == "/quit" or message == "/exit" or message == "/bye":
|
34 |
+
running = False
|
35 |
+
else:
|
36 |
+
chunks = run_model(message, max_tokens=100, repetition_penalty=2)
|
37 |
+
start = time.time()
|
38 |
+
for chunk in chunks:
|
39 |
+
total.append(chunk)
|
40 |
+
print(chunk, end="")
|
41 |
+
end = time.time()
|
42 |
+
print()
|
43 |
+
if show_speed:
|
44 |
+
print(f"Took: {end-start}s")
|
45 |
+
print(f"Generated: {len(total)}")
|
46 |
+
print(f"Speed: {len(total)/(end-start)} t/s")
|
47 |
+
print("_____________________________")
|
48 |
+
|
49 |
+
|