Update README.md
Browse files
README.md
CHANGED
@@ -1,200 +1,80 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags:
|
4 |
-
- unsloth
|
5 |
-
---
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
|
|
|
|
|
|
|
11 |
|
|
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
### Model Description
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
- **Funded by [optional]:** [More Information Needed]
|
23 |
-
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
26 |
-
- **License:** [More Information Needed]
|
27 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
- **Paper [optional]:** [More Information Needed]
|
35 |
-
- **Demo [optional]:** [More Information Needed]
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
###
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
-
###
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
68 |
-
|
69 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
70 |
-
|
71 |
-
## How to Get Started with the Model
|
72 |
-
|
73 |
-
Use the code below to get started with the model.
|
74 |
-
|
75 |
-
[More Information Needed]
|
76 |
-
|
77 |
-
## Training Details
|
78 |
-
|
79 |
-
### Training Data
|
80 |
-
|
81 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
-
|
83 |
-
[More Information Needed]
|
84 |
-
|
85 |
-
### Training Procedure
|
86 |
-
|
87 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
88 |
-
|
89 |
-
#### Preprocessing [optional]
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
|
94 |
-
#### Training Hyperparameters
|
95 |
-
|
96 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
97 |
-
|
98 |
-
#### Speeds, Sizes, Times [optional]
|
99 |
-
|
100 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Evaluation
|
105 |
-
|
106 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
107 |
-
|
108 |
-
### Testing Data, Factors & Metrics
|
109 |
-
|
110 |
-
#### Testing Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
|
|
1 |
+
# Google Colabでの推論手順
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
この手順では、Hugging Face HubにアップロードされたLLMモデル (`nagasahiro/llm-jp-3-13b-sft-07`)をGoogle Colab環境で読み込み、推論を実行する方法について説明します。
|
4 |
|
5 |
+
## 準備
|
6 |
|
7 |
+
1. **Google Colabへのログイン:** GoogleアカウントでGoogle Colabにログインしてください。
|
8 |
+
2. **ノートブックの作成:** 新しいPython 3のノートブックを作成します。
|
9 |
+
3. **シークレットの設定:** Hugging Face のトークン (`HF_TOKEN`) を Google Colab のシークレットに登録してください。
|
10 |
|
11 |
+
**シークレットの設定方法:**
|
12 |
|
13 |
+
1. Google Colab の左側のメニューから「シークレット」を選択します。
|
14 |
+
2. 「シークレットを作成」をクリックし、名前 (`HF_TOKEN`) と値をそれぞれ入力して保存します。
|
15 |
|
|
|
16 |
|
17 |
+
## 推論の実行手順
|
18 |
|
19 |
+
以下の手順をGoogle Colabのコードセルに入力し、実行してください。
|
20 |
|
21 |
+
### 1. 必要なライブラリのインストール
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
```python
|
24 |
+
%%capture
|
25 |
+
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
26 |
+
```
|
27 |
|
28 |
+
### 2. Hugging Face Hubへのログイン
|
29 |
|
30 |
+
Hugging Face Hubからモデルをダウンロードするために、認証を行います。以下のコードを実行し、Hugging Faceのトークンを入力してください。
|
|
|
|
|
31 |
|
32 |
+
```python
|
33 |
+
from huggingface_hub import login
|
34 |
+
from google.colab import userdata
|
35 |
|
36 |
+
HF_TOKEN = userdata.get('HF_TOKEN')
|
37 |
+
login(HF_TOKEN)
|
38 |
+
```
|
39 |
|
40 |
+
### 3. モデルの準備
|
41 |
|
42 |
+
推論に使用するモデルをロードします。
|
43 |
|
44 |
+
```python
|
45 |
+
from unsloth import FastLanguageModel
|
46 |
|
47 |
+
model_name = "nagasahiro/llm-jp-3-13b-sft-07"
|
48 |
+
max_seq_length = 2048
|
49 |
+
dtype = None
|
50 |
+
load_in_4bit = True
|
51 |
|
52 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
53 |
+
model_name = model_name,
|
54 |
+
max_seq_length = max_seq_length,
|
55 |
+
dtype = dtype,
|
56 |
+
load_in_4bit = load_in_4bit,
|
57 |
+
)
|
58 |
|
59 |
+
FastLanguageModel.for_inference(model)
|
60 |
+
```
|
61 |
|
62 |
+
### 4. 推論の実行
|
63 |
|
64 |
+
推論を実行するコードです。プロンプトを変更することで、様々なタスクに対応できます。
|
65 |
|
66 |
+
```python
|
67 |
+
import torch
|
68 |
|
69 |
+
prompt = "質問: 日本の首都は?\n回答:"
|
70 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
71 |
+
outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
|
72 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('回答:')[-1]
|
73 |
+
print(prediction)
|
74 |
+
```
|
75 |
|
76 |
+
## 補足事項
|
77 |
|
78 |
+
* この手順は Google Colab 環境で L4 GPU を用いて検証されました。
|
79 |
+
* Google Colab の環境によっては、ライブラリのインストールやモデルのダウンロードに時間がかかる場合があります。
|
80 |
+
* エラーが発生した場合は、エラーメッセージを確認し、手順を見直してください。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|