nagasahiro commited on
Commit
1f545b1
·
verified ·
1 Parent(s): 1a1c8a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -174
README.md CHANGED
@@ -1,200 +1,80 @@
1
- ---
2
- library_name: transformers
3
- tags:
4
- - unsloth
5
- ---
6
 
7
- # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
 
 
 
 
11
 
 
12
 
13
- ## Model Details
 
14
 
15
- ### Model Description
16
 
17
- <!-- Provide a longer summary of what this model is. -->
18
 
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
 
 
 
30
 
31
- <!-- Provide the basic links for the model. -->
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
- ## Uses
 
 
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
40
 
41
- ### Direct Use
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
 
45
- [More Information Needed]
 
46
 
47
- ### Downstream Use [optional]
 
 
 
48
 
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
50
 
51
- [More Information Needed]
 
52
 
53
- ### Out-of-Scope Use
54
 
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
 
57
- [More Information Needed]
 
58
 
59
- ## Bias, Risks, and Limitations
 
 
 
 
 
60
 
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
 
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
+ # Google Colabでの推論手順
 
 
 
 
2
 
3
+ この手順では、Hugging Face HubにアップロードされたLLMモデル (`nagasahiro/llm-jp-3-13b-sft-07`)をGoogle Colab環境で読み込み、推論を実行する方法について説明します。
4
 
5
+ ## 準備
6
 
7
+ 1. **Google Colabへのログイン:** GoogleアカウントでGoogle Colabにログインしてください。
8
+ 2. **ノートブックの作成:** 新しいPython 3のノートブックを作成します。
9
+ 3. **シークレットの設定:** Hugging Face のトークン (`HF_TOKEN`) を Google Colab のシークレットに登録してください。
10
 
11
+ **シークレットの設定方法:**
12
 
13
+ 1. Google Colab の左側のメニューから「シークレット」を選択します。
14
+ 2. 「シークレットを作成」をクリックし、名前 (`HF_TOKEN`) と値をそれぞれ入力して保存します。
15
 
 
16
 
17
+ ## 推論の実行手順
18
 
19
+ 以下の手順をGoogle Colabのコードセルに入力し、実行してください。
20
 
21
+ ### 1. 必要なライブラリのインストール
 
 
 
 
 
 
22
 
23
+ ```python
24
+ %%capture
25
+ !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
26
+ ```
27
 
28
+ ### 2. Hugging Face Hubへのログイン
29
 
30
+ Hugging Face Hubからモデルをダウンロードするために、認証を行います。以下のコードを実行し、Hugging Faceのトークンを入力してください。
 
 
31
 
32
+ ```python
33
+ from huggingface_hub import login
34
+ from google.colab import userdata
35
 
36
+ HF_TOKEN = userdata.get('HF_TOKEN')
37
+ login(HF_TOKEN)
38
+ ```
39
 
40
+ ### 3. モデルの準備
41
 
42
+ 推論に使用するモデルをロードします。
43
 
44
+ ```python
45
+ from unsloth import FastLanguageModel
46
 
47
+ model_name = "nagasahiro/llm-jp-3-13b-sft-07"
48
+ max_seq_length = 2048
49
+ dtype = None
50
+ load_in_4bit = True
51
 
52
+ model, tokenizer = FastLanguageModel.from_pretrained(
53
+ model_name = model_name,
54
+ max_seq_length = max_seq_length,
55
+ dtype = dtype,
56
+ load_in_4bit = load_in_4bit,
57
+ )
58
 
59
+ FastLanguageModel.for_inference(model)
60
+ ```
61
 
62
+ ### 4. 推論の実行
63
 
64
+ 推論を実行するコードです。プロンプトを変更することで、様々なタスクに対応できます。
65
 
66
+ ```python
67
+ import torch
68
 
69
+ prompt = "質問: 日本の首都は?\n回答:"
70
+ inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
71
+ outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
72
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('回答:')[-1]
73
+ print(prediction)
74
+ ```
75
 
76
+ ## 補足事項
77
 
78
+ * この手順は Google Colab 環境で L4 GPU を用いて検証されました。
79
+ * Google Colab の環境によっては、ライブラリのインストールやモデルのダウンロードに時間がかかる場合があります。
80
+ * エラーが発生した場合は、エラーメッセージを確認し、手順を見直してください。