--- library_name: transformers license: mit base_model: almanach/camembert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: td2 results: [] language: - fr --- # td2 TD2 - ESGI # Ahmed Ennaifer & Sarra Chabane Chaouche This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset. It achieves the following results on the evaluation set of train/test: - Loss: 0.0128 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9983 # The model got an accuracy of `0.998` on the seperate eval dataset : `test_fr` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 160 | 0.0455 | 0.0 | 0.0 | 0.0 | 0.9975 | | No log | 2.0 | 320 | 0.0292 | 0.0 | 0.0 | 0.0 | 0.9981 | | No log | 3.0 | 480 | 0.0224 | 0.0 | 0.0 | 0.0 | 0.9981 | | 0.0837 | 4.0 | 640 | 0.0188 | 0.0 | 0.0 | 0.0 | 0.9981 | | 0.0837 | 5.0 | 800 | 0.0166 | 0.0 | 0.0 | 0.0 | 0.9979 | | 0.0837 | 6.0 | 960 | 0.0148 | 0.0 | 0.0 | 0.0 | 0.9981 | | 0.0182 | 7.0 | 1120 | 0.0139 | 0.0 | 0.0 | 0.0 | 0.9982 | | 0.0182 | 8.0 | 1280 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.9981 | | 0.0182 | 9.0 | 1440 | 0.0129 | 0.0 | 0.0 | 0.0 | 0.9982 | | 0.0122 | 10.0 | 1600 | 0.0128 | 0.0 | 0.0 | 0.0 | 0.9983 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1