--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:456 - loss:SoftmaxLoss base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 widget: - source_sentence: not especially natural sentences: - bright - bright - bright - source_sentence: くつろいだ感じじゃない sentences: - bright - bright - cozy - source_sentence: not especially bright sentences: - bright - cozy - natural - source_sentence: 明るくしないで sentences: - cozy - cozy - bright - source_sentence: This room feels too cozy I need something more energetic sentences: - cozy - bright - bright pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'This room feels too cozy I need something more energetic', 'bright', 'cozy', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 456 training samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 456 samples: | | premise | hypothesis | label | |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:-------------------------------------------------------------------|:--------------------|:---------------| | not romantic lighting | bright | 1 | | These lights are way too bright please turn them down | cozy | 1 | | not quite cozy | bright | 1 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 115 evaluation samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 115 samples: | | premise | hypothesis | label | |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:-----------------------------------------------------------------------|:------------------|:---------------| | not warm | cozy | 0 | | In the evening I want lighting that's not bright but cozy | cozy | 1 | | 明るい光は苦手です | cozy | 1 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 7 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `ddp_find_unused_parameters`: False #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 7 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: False - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.1724 | 5 | 0.7808 | - | | 0.3448 | 10 | 0.7224 | - | | 0.5172 | 15 | 0.5833 | - | | 0.6897 | 20 | 0.4336 | - | | 0.8621 | 25 | 0.426 | - | | 1.0 | 29 | - | 0.4209 | | 1.0345 | 30 | 0.407 | - | | 1.2069 | 35 | 0.4633 | - | | 1.3793 | 40 | 0.2629 | - | | 1.5517 | 45 | 0.4468 | - | | 1.7241 | 50 | 0.3665 | - | | 1.8966 | 55 | 0.2735 | - | | 2.0 | 58 | - | 0.3269 | | 2.0690 | 60 | 0.2472 | - | | 2.2414 | 65 | 0.2586 | - | | 2.4138 | 70 | 0.2281 | - | | 2.5862 | 75 | 0.3056 | - | | 2.7586 | 80 | 0.2166 | - | | 2.9310 | 85 | 0.2243 | - | | 3.0 | 87 | - | 0.2471 | | 3.1034 | 90 | 0.2233 | - | | 3.2759 | 95 | 0.1625 | - | | 3.4483 | 100 | 0.1718 | - | | 3.6207 | 105 | 0.1728 | - | | 3.7931 | 110 | 0.1949 | - | | 3.9655 | 115 | 0.0891 | - | | 4.0 | 116 | - | 0.1997 | | 4.1379 | 120 | 0.1895 | - | | 4.3103 | 125 | 0.1021 | - | | 4.4828 | 130 | 0.1232 | - | | 4.6552 | 135 | 0.0891 | - | | 4.8276 | 140 | 0.109 | - | | 5.0 | 145 | 0.0879 | 0.1679 | | 5.1724 | 150 | 0.0814 | - | | 5.3448 | 155 | 0.1015 | - | | 5.5172 | 160 | 0.0822 | - | | 5.6897 | 165 | 0.1054 | - | | 5.8621 | 170 | 0.1093 | - | | 6.0 | 174 | - | 0.1479 | | 6.0345 | 175 | 0.0911 | - | | 6.2069 | 180 | 0.0804 | - | | 6.3793 | 185 | 0.1063 | - | | 6.5517 | 190 | 0.0821 | - | | 6.7241 | 195 | 0.0988 | - | | 6.8966 | 200 | 0.0691 | - | | 7.0 | 203 | - | 0.1430 | ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0 - PyTorch: 2.4.0 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```