nabil-tazi commited on
Commit
0b18469
·
verified ·
1 Parent(s): 4f3e62b

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-203/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-203/unigram.json filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.14303971827030182
25
+
26
+ runtime: 1.4424
27
+
28
+ samples_per_second: 79.726
29
+
30
+ steps_per_second: 2.773
31
+
32
+ : 7.0
33
+
34
+ ## Usage
35
+
36
+ ### Direct Usage (Sentence Transformers)
37
+
38
+ First install the Sentence Transformers library:
39
+
40
+ ```bash
41
+ pip install -U sentence-transformers
42
+ ```
43
+
44
+ Then you can load this model and run inference.
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Download from the Hugging Face Hub
49
+ model = SentenceTransformer("sentence_transformers_model_id")
50
+ # Run inference
51
+ sentences = [
52
+ 'search_query: autotrain',
53
+ 'search_query: auto train',
54
+ 'search_query: i love autotrain',
55
+ ]
56
+ embeddings = model.encode(sentences)
57
+ print(embeddings.shape)
58
+
59
+ # Get the similarity scores for the embeddings
60
+ similarities = model.similarity(embeddings, embeddings)
61
+ print(similarities.shape)
62
+ ```
checkpoint-203/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-203/README.md ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:456
8
+ - loss:SoftmaxLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: not especially natural
12
+ sentences:
13
+ - bright
14
+ - bright
15
+ - bright
16
+ - source_sentence: くつろいだ感じじゃない
17
+ sentences:
18
+ - bright
19
+ - bright
20
+ - cozy
21
+ - source_sentence: not especially bright
22
+ sentences:
23
+ - bright
24
+ - cozy
25
+ - natural
26
+ - source_sentence: 明るくしないで
27
+ sentences:
28
+ - cozy
29
+ - cozy
30
+ - bright
31
+ - source_sentence: This room feels too cozy I need something more energetic
32
+ sentences:
33
+ - cozy
34
+ - bright
35
+ - bright
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
49
+ - **Maximum Sequence Length:** 128 tokens
50
+ - **Output Dimensionality:** 384 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("sentence_transformers_model_id")
87
+ # Run inference
88
+ sentences = [
89
+ 'This room feels too cozy I need something more energetic',
90
+ 'bright',
91
+ 'cozy',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 384]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 456 training samples
147
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
148
+ * Approximate statistics based on the first 456 samples:
149
+ | | premise | hypothesis | label |
150
+ |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------|
151
+ | type | string | string | int |
152
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.82 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.31 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>0: ~17.98%</li><li>1: ~82.02%</li></ul> |
153
+ * Samples:
154
+ | premise | hypothesis | label |
155
+ |:-------------------------------------------------------------------|:--------------------|:---------------|
156
+ | <code>not romantic lighting</code> | <code>bright</code> | <code>1</code> |
157
+ | <code>These lights are way too bright please turn them down</code> | <code>cozy</code> | <code>1</code> |
158
+ | <code>not quite cozy</code> | <code>bright</code> | <code>1</code> |
159
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
160
+
161
+ ### Evaluation Dataset
162
+
163
+ #### Unnamed Dataset
164
+
165
+
166
+ * Size: 115 evaluation samples
167
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
168
+ * Approximate statistics based on the first 115 samples:
169
+ | | premise | hypothesis | label |
170
+ |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------|
171
+ | type | string | string | int |
172
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.24 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.38 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>0: ~20.87%</li><li>1: ~79.13%</li></ul> |
173
+ * Samples:
174
+ | premise | hypothesis | label |
175
+ |:-----------------------------------------------------------------------|:------------------|:---------------|
176
+ | <code>not warm</code> | <code>cozy</code> | <code>0</code> |
177
+ | <code>In the evening I want lighting that's not bright but cozy</code> | <code>cozy</code> | <code>1</code> |
178
+ | <code>明るい光は苦手です</code> | <code>cozy</code> | <code>1</code> |
179
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
180
+
181
+ ### Training Hyperparameters
182
+ #### Non-Default Hyperparameters
183
+
184
+ - `eval_strategy`: epoch
185
+ - `per_device_train_batch_size`: 16
186
+ - `per_device_eval_batch_size`: 32
187
+ - `learning_rate`: 2e-05
188
+ - `num_train_epochs`: 7
189
+ - `warmup_ratio`: 0.1
190
+ - `fp16`: True
191
+ - `load_best_model_at_end`: True
192
+ - `ddp_find_unused_parameters`: False
193
+
194
+ #### All Hyperparameters
195
+ <details><summary>Click to expand</summary>
196
+
197
+ - `overwrite_output_dir`: False
198
+ - `do_predict`: False
199
+ - `eval_strategy`: epoch
200
+ - `prediction_loss_only`: True
201
+ - `per_device_train_batch_size`: 16
202
+ - `per_device_eval_batch_size`: 32
203
+ - `per_gpu_train_batch_size`: None
204
+ - `per_gpu_eval_batch_size`: None
205
+ - `gradient_accumulation_steps`: 1
206
+ - `eval_accumulation_steps`: None
207
+ - `torch_empty_cache_steps`: None
208
+ - `learning_rate`: 2e-05
209
+ - `weight_decay`: 0.0
210
+ - `adam_beta1`: 0.9
211
+ - `adam_beta2`: 0.999
212
+ - `adam_epsilon`: 1e-08
213
+ - `max_grad_norm`: 1.0
214
+ - `num_train_epochs`: 7
215
+ - `max_steps`: -1
216
+ - `lr_scheduler_type`: linear
217
+ - `lr_scheduler_kwargs`: {}
218
+ - `warmup_ratio`: 0.1
219
+ - `warmup_steps`: 0
220
+ - `log_level`: passive
221
+ - `log_level_replica`: warning
222
+ - `log_on_each_node`: True
223
+ - `logging_nan_inf_filter`: True
224
+ - `save_safetensors`: True
225
+ - `save_on_each_node`: False
226
+ - `save_only_model`: False
227
+ - `restore_callback_states_from_checkpoint`: False
228
+ - `no_cuda`: False
229
+ - `use_cpu`: False
230
+ - `use_mps_device`: False
231
+ - `seed`: 42
232
+ - `data_seed`: None
233
+ - `jit_mode_eval`: False
234
+ - `use_ipex`: False
235
+ - `bf16`: False
236
+ - `fp16`: True
237
+ - `fp16_opt_level`: O1
238
+ - `half_precision_backend`: auto
239
+ - `bf16_full_eval`: False
240
+ - `fp16_full_eval`: False
241
+ - `tf32`: None
242
+ - `local_rank`: 0
243
+ - `ddp_backend`: None
244
+ - `tpu_num_cores`: None
245
+ - `tpu_metrics_debug`: False
246
+ - `debug`: []
247
+ - `dataloader_drop_last`: False
248
+ - `dataloader_num_workers`: 0
249
+ - `dataloader_prefetch_factor`: None
250
+ - `past_index`: -1
251
+ - `disable_tqdm`: False
252
+ - `remove_unused_columns`: True
253
+ - `label_names`: None
254
+ - `load_best_model_at_end`: True
255
+ - `ignore_data_skip`: False
256
+ - `fsdp`: []
257
+ - `fsdp_min_num_params`: 0
258
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
259
+ - `fsdp_transformer_layer_cls_to_wrap`: None
260
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
261
+ - `deepspeed`: None
262
+ - `label_smoothing_factor`: 0.0
263
+ - `optim`: adamw_torch
264
+ - `optim_args`: None
265
+ - `adafactor`: False
266
+ - `group_by_length`: False
267
+ - `length_column_name`: length
268
+ - `ddp_find_unused_parameters`: False
269
+ - `ddp_bucket_cap_mb`: None
270
+ - `ddp_broadcast_buffers`: False
271
+ - `dataloader_pin_memory`: True
272
+ - `dataloader_persistent_workers`: False
273
+ - `skip_memory_metrics`: True
274
+ - `use_legacy_prediction_loop`: False
275
+ - `push_to_hub`: False
276
+ - `resume_from_checkpoint`: None
277
+ - `hub_model_id`: None
278
+ - `hub_strategy`: every_save
279
+ - `hub_private_repo`: None
280
+ - `hub_always_push`: False
281
+ - `gradient_checkpointing`: False
282
+ - `gradient_checkpointing_kwargs`: None
283
+ - `include_inputs_for_metrics`: False
284
+ - `include_for_metrics`: []
285
+ - `eval_do_concat_batches`: True
286
+ - `fp16_backend`: auto
287
+ - `push_to_hub_model_id`: None
288
+ - `push_to_hub_organization`: None
289
+ - `mp_parameters`:
290
+ - `auto_find_batch_size`: False
291
+ - `full_determinism`: False
292
+ - `torchdynamo`: None
293
+ - `ray_scope`: last
294
+ - `ddp_timeout`: 1800
295
+ - `torch_compile`: False
296
+ - `torch_compile_backend`: None
297
+ - `torch_compile_mode`: None
298
+ - `dispatch_batches`: None
299
+ - `split_batches`: None
300
+ - `include_tokens_per_second`: False
301
+ - `include_num_input_tokens_seen`: False
302
+ - `neftune_noise_alpha`: None
303
+ - `optim_target_modules`: None
304
+ - `batch_eval_metrics`: False
305
+ - `eval_on_start`: False
306
+ - `use_liger_kernel`: False
307
+ - `eval_use_gather_object`: False
308
+ - `average_tokens_across_devices`: False
309
+ - `prompts`: None
310
+ - `batch_sampler`: batch_sampler
311
+ - `multi_dataset_batch_sampler`: proportional
312
+
313
+ </details>
314
+
315
+ ### Training Logs
316
+ | Epoch | Step | Training Loss | Validation Loss |
317
+ |:------:|:----:|:-------------:|:---------------:|
318
+ | 0.1724 | 5 | 0.7808 | - |
319
+ | 0.3448 | 10 | 0.7224 | - |
320
+ | 0.5172 | 15 | 0.5833 | - |
321
+ | 0.6897 | 20 | 0.4336 | - |
322
+ | 0.8621 | 25 | 0.426 | - |
323
+ | 1.0 | 29 | - | 0.4209 |
324
+ | 1.0345 | 30 | 0.407 | - |
325
+ | 1.2069 | 35 | 0.4633 | - |
326
+ | 1.3793 | 40 | 0.2629 | - |
327
+ | 1.5517 | 45 | 0.4468 | - |
328
+ | 1.7241 | 50 | 0.3665 | - |
329
+ | 1.8966 | 55 | 0.2735 | - |
330
+ | 2.0 | 58 | - | 0.3269 |
331
+ | 2.0690 | 60 | 0.2472 | - |
332
+ | 2.2414 | 65 | 0.2586 | - |
333
+ | 2.4138 | 70 | 0.2281 | - |
334
+ | 2.5862 | 75 | 0.3056 | - |
335
+ | 2.7586 | 80 | 0.2166 | - |
336
+ | 2.9310 | 85 | 0.2243 | - |
337
+ | 3.0 | 87 | - | 0.2471 |
338
+ | 3.1034 | 90 | 0.2233 | - |
339
+ | 3.2759 | 95 | 0.1625 | - |
340
+ | 3.4483 | 100 | 0.1718 | - |
341
+ | 3.6207 | 105 | 0.1728 | - |
342
+ | 3.7931 | 110 | 0.1949 | - |
343
+ | 3.9655 | 115 | 0.0891 | - |
344
+ | 4.0 | 116 | - | 0.1997 |
345
+ | 4.1379 | 120 | 0.1895 | - |
346
+ | 4.3103 | 125 | 0.1021 | - |
347
+ | 4.4828 | 130 | 0.1232 | - |
348
+ | 4.6552 | 135 | 0.0891 | - |
349
+ | 4.8276 | 140 | 0.109 | - |
350
+ | 5.0 | 145 | 0.0879 | 0.1679 |
351
+ | 5.1724 | 150 | 0.0814 | - |
352
+ | 5.3448 | 155 | 0.1015 | - |
353
+ | 5.5172 | 160 | 0.0822 | - |
354
+ | 5.6897 | 165 | 0.1054 | - |
355
+ | 5.8621 | 170 | 0.1093 | - |
356
+ | 6.0 | 174 | - | 0.1479 |
357
+ | 6.0345 | 175 | 0.0911 | - |
358
+ | 6.2069 | 180 | 0.0804 | - |
359
+ | 6.3793 | 185 | 0.1063 | - |
360
+ | 6.5517 | 190 | 0.0821 | - |
361
+ | 6.7241 | 195 | 0.0988 | - |
362
+ | 6.8966 | 200 | 0.0691 | - |
363
+ | 7.0 | 203 | - | 0.1430 |
364
+
365
+
366
+ ### Framework Versions
367
+ - Python: 3.10.16
368
+ - Sentence Transformers: 3.3.1
369
+ - Transformers: 4.48.0
370
+ - PyTorch: 2.4.0
371
+ - Accelerate: 1.2.1
372
+ - Datasets: 3.2.0
373
+ - Tokenizers: 0.21.0
374
+
375
+ ## Citation
376
+
377
+ ### BibTeX
378
+
379
+ #### Sentence Transformers and SoftmaxLoss
380
+ ```bibtex
381
+ @inproceedings{reimers-2019-sentence-bert,
382
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
383
+ author = "Reimers, Nils and Gurevych, Iryna",
384
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
385
+ month = "11",
386
+ year = "2019",
387
+ publisher = "Association for Computational Linguistics",
388
+ url = "https://arxiv.org/abs/1908.10084",
389
+ }
390
+ ```
391
+
392
+ <!--
393
+ ## Glossary
394
+
395
+ *Clearly define terms in order to be accessible across audiences.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Authors
400
+
401
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
402
+ -->
403
+
404
+ <!--
405
+ ## Model Card Contact
406
+
407
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
408
+ -->
checkpoint-203/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
checkpoint-203/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-203/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b9be9d9e76440a3a74ade4f9b4f7c376e404d1f74a579553059d91dc4ef7406
3
+ size 470637416
checkpoint-203/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-203/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:441fa5024fdadba26b685a511fc33dc3927275f448a1a0273f9d49296a48df9a
3
+ size 940226682
checkpoint-203/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e1dbcbf9ee2884a40d6c1a0fe31161f6bf610443fb0f04cf4e04294a46efc2
3
+ size 13990
checkpoint-203/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9be6dc1393b4eb31d79ee7d8d417bec396842211c6cb2a1bd3a9c7aa5d24d6a
3
+ size 1064
checkpoint-203/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-203/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-203/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-203/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-203/trainer_state.json ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.14303971827030182,
3
+ "best_model_checkpoint": "autotrain-tckj2-dxpo0/checkpoint-203",
4
+ "epoch": 7.0,
5
+ "eval_steps": 500,
6
+ "global_step": 203,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1724137931034483,
13
+ "grad_norm": 3.970233678817749,
14
+ "learning_rate": 4.761904761904762e-06,
15
+ "loss": 0.7808,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.3448275862068966,
20
+ "grad_norm": 2.5622565746307373,
21
+ "learning_rate": 9.523809523809525e-06,
22
+ "loss": 0.7224,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.5172413793103449,
27
+ "grad_norm": 1.819740891456604,
28
+ "learning_rate": 1.4285714285714287e-05,
29
+ "loss": 0.5833,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.6896551724137931,
34
+ "grad_norm": 1.9450643062591553,
35
+ "learning_rate": 1.904761904761905e-05,
36
+ "loss": 0.4336,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.8620689655172413,
41
+ "grad_norm": 1.2047266960144043,
42
+ "learning_rate": 1.9560439560439563e-05,
43
+ "loss": 0.426,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 1.0,
48
+ "eval_loss": 0.42094460129737854,
49
+ "eval_runtime": 1.7024,
50
+ "eval_samples_per_second": 67.553,
51
+ "eval_steps_per_second": 2.35,
52
+ "step": 29
53
+ },
54
+ {
55
+ "epoch": 1.0344827586206897,
56
+ "grad_norm": 1.0075544118881226,
57
+ "learning_rate": 1.901098901098901e-05,
58
+ "loss": 0.407,
59
+ "step": 30
60
+ },
61
+ {
62
+ "epoch": 1.206896551724138,
63
+ "grad_norm": 2.6184139251708984,
64
+ "learning_rate": 1.8461538461538465e-05,
65
+ "loss": 0.4633,
66
+ "step": 35
67
+ },
68
+ {
69
+ "epoch": 1.3793103448275863,
70
+ "grad_norm": 1.3700945377349854,
71
+ "learning_rate": 1.7912087912087915e-05,
72
+ "loss": 0.2629,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 1.5517241379310345,
77
+ "grad_norm": 1.5076994895935059,
78
+ "learning_rate": 1.7362637362637363e-05,
79
+ "loss": 0.4468,
80
+ "step": 45
81
+ },
82
+ {
83
+ "epoch": 1.7241379310344827,
84
+ "grad_norm": 1.0693202018737793,
85
+ "learning_rate": 1.6813186813186814e-05,
86
+ "loss": 0.3665,
87
+ "step": 50
88
+ },
89
+ {
90
+ "epoch": 1.896551724137931,
91
+ "grad_norm": 1.7655493021011353,
92
+ "learning_rate": 1.6263736263736265e-05,
93
+ "loss": 0.2735,
94
+ "step": 55
95
+ },
96
+ {
97
+ "epoch": 2.0,
98
+ "eval_loss": 0.3269391655921936,
99
+ "eval_runtime": 1.3905,
100
+ "eval_samples_per_second": 82.706,
101
+ "eval_steps_per_second": 2.877,
102
+ "step": 58
103
+ },
104
+ {
105
+ "epoch": 2.0689655172413794,
106
+ "grad_norm": 1.0194451808929443,
107
+ "learning_rate": 1.5714285714285715e-05,
108
+ "loss": 0.2472,
109
+ "step": 60
110
+ },
111
+ {
112
+ "epoch": 2.2413793103448274,
113
+ "grad_norm": 2.360098361968994,
114
+ "learning_rate": 1.5164835164835166e-05,
115
+ "loss": 0.2586,
116
+ "step": 65
117
+ },
118
+ {
119
+ "epoch": 2.413793103448276,
120
+ "grad_norm": 1.4176146984100342,
121
+ "learning_rate": 1.4615384615384615e-05,
122
+ "loss": 0.2281,
123
+ "step": 70
124
+ },
125
+ {
126
+ "epoch": 2.586206896551724,
127
+ "grad_norm": 3.5215818881988525,
128
+ "learning_rate": 1.4065934065934068e-05,
129
+ "loss": 0.3056,
130
+ "step": 75
131
+ },
132
+ {
133
+ "epoch": 2.7586206896551726,
134
+ "grad_norm": 1.205544352531433,
135
+ "learning_rate": 1.3516483516483519e-05,
136
+ "loss": 0.2166,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 2.9310344827586206,
141
+ "grad_norm": 1.4513664245605469,
142
+ "learning_rate": 1.296703296703297e-05,
143
+ "loss": 0.2243,
144
+ "step": 85
145
+ },
146
+ {
147
+ "epoch": 3.0,
148
+ "eval_loss": 0.2470882385969162,
149
+ "eval_runtime": 1.6355,
150
+ "eval_samples_per_second": 70.316,
151
+ "eval_steps_per_second": 2.446,
152
+ "step": 87
153
+ },
154
+ {
155
+ "epoch": 3.103448275862069,
156
+ "grad_norm": 1.3780584335327148,
157
+ "learning_rate": 1.2417582417582419e-05,
158
+ "loss": 0.2233,
159
+ "step": 90
160
+ },
161
+ {
162
+ "epoch": 3.2758620689655173,
163
+ "grad_norm": 1.5511927604675293,
164
+ "learning_rate": 1.186813186813187e-05,
165
+ "loss": 0.1625,
166
+ "step": 95
167
+ },
168
+ {
169
+ "epoch": 3.4482758620689653,
170
+ "grad_norm": 1.3662214279174805,
171
+ "learning_rate": 1.131868131868132e-05,
172
+ "loss": 0.1718,
173
+ "step": 100
174
+ },
175
+ {
176
+ "epoch": 3.6206896551724137,
177
+ "grad_norm": 2.4403982162475586,
178
+ "learning_rate": 1.076923076923077e-05,
179
+ "loss": 0.1728,
180
+ "step": 105
181
+ },
182
+ {
183
+ "epoch": 3.793103448275862,
184
+ "grad_norm": 1.4150804281234741,
185
+ "learning_rate": 1.021978021978022e-05,
186
+ "loss": 0.1949,
187
+ "step": 110
188
+ },
189
+ {
190
+ "epoch": 3.9655172413793105,
191
+ "grad_norm": 2.6226606369018555,
192
+ "learning_rate": 9.670329670329671e-06,
193
+ "loss": 0.0891,
194
+ "step": 115
195
+ },
196
+ {
197
+ "epoch": 4.0,
198
+ "eval_loss": 0.19967548549175262,
199
+ "eval_runtime": 1.725,
200
+ "eval_samples_per_second": 66.667,
201
+ "eval_steps_per_second": 2.319,
202
+ "step": 116
203
+ },
204
+ {
205
+ "epoch": 4.137931034482759,
206
+ "grad_norm": 2.1667020320892334,
207
+ "learning_rate": 9.120879120879122e-06,
208
+ "loss": 0.1895,
209
+ "step": 120
210
+ },
211
+ {
212
+ "epoch": 4.310344827586207,
213
+ "grad_norm": 1.2279396057128906,
214
+ "learning_rate": 8.571428571428571e-06,
215
+ "loss": 0.1021,
216
+ "step": 125
217
+ },
218
+ {
219
+ "epoch": 4.482758620689655,
220
+ "grad_norm": 2.164337396621704,
221
+ "learning_rate": 8.021978021978023e-06,
222
+ "loss": 0.1232,
223
+ "step": 130
224
+ },
225
+ {
226
+ "epoch": 4.655172413793103,
227
+ "grad_norm": 0.4767724573612213,
228
+ "learning_rate": 7.472527472527473e-06,
229
+ "loss": 0.0891,
230
+ "step": 135
231
+ },
232
+ {
233
+ "epoch": 4.827586206896552,
234
+ "grad_norm": 0.7710694074630737,
235
+ "learning_rate": 6.923076923076923e-06,
236
+ "loss": 0.109,
237
+ "step": 140
238
+ },
239
+ {
240
+ "epoch": 5.0,
241
+ "grad_norm": 0.6246473789215088,
242
+ "learning_rate": 6.373626373626373e-06,
243
+ "loss": 0.0879,
244
+ "step": 145
245
+ },
246
+ {
247
+ "epoch": 5.0,
248
+ "eval_loss": 0.16786590218544006,
249
+ "eval_runtime": 1.7475,
250
+ "eval_samples_per_second": 65.808,
251
+ "eval_steps_per_second": 2.289,
252
+ "step": 145
253
+ },
254
+ {
255
+ "epoch": 5.172413793103448,
256
+ "grad_norm": 1.7630176544189453,
257
+ "learning_rate": 5.824175824175825e-06,
258
+ "loss": 0.0814,
259
+ "step": 150
260
+ },
261
+ {
262
+ "epoch": 5.344827586206897,
263
+ "grad_norm": 0.9055896401405334,
264
+ "learning_rate": 5.274725274725275e-06,
265
+ "loss": 0.1015,
266
+ "step": 155
267
+ },
268
+ {
269
+ "epoch": 5.517241379310345,
270
+ "grad_norm": 1.1590590476989746,
271
+ "learning_rate": 4.725274725274726e-06,
272
+ "loss": 0.0822,
273
+ "step": 160
274
+ },
275
+ {
276
+ "epoch": 5.689655172413794,
277
+ "grad_norm": 3.4120426177978516,
278
+ "learning_rate": 4.175824175824177e-06,
279
+ "loss": 0.1054,
280
+ "step": 165
281
+ },
282
+ {
283
+ "epoch": 5.862068965517241,
284
+ "grad_norm": 1.244531273841858,
285
+ "learning_rate": 3.6263736263736266e-06,
286
+ "loss": 0.1093,
287
+ "step": 170
288
+ },
289
+ {
290
+ "epoch": 6.0,
291
+ "eval_loss": 0.14788025617599487,
292
+ "eval_runtime": 1.4731,
293
+ "eval_samples_per_second": 78.065,
294
+ "eval_steps_per_second": 2.715,
295
+ "step": 174
296
+ },
297
+ {
298
+ "epoch": 6.0344827586206895,
299
+ "grad_norm": 0.7680085301399231,
300
+ "learning_rate": 3.0769230769230774e-06,
301
+ "loss": 0.0911,
302
+ "step": 175
303
+ },
304
+ {
305
+ "epoch": 6.206896551724138,
306
+ "grad_norm": 1.3764543533325195,
307
+ "learning_rate": 2.5274725274725274e-06,
308
+ "loss": 0.0804,
309
+ "step": 180
310
+ },
311
+ {
312
+ "epoch": 6.379310344827586,
313
+ "grad_norm": 1.9512306451797485,
314
+ "learning_rate": 1.9780219780219782e-06,
315
+ "loss": 0.1063,
316
+ "step": 185
317
+ },
318
+ {
319
+ "epoch": 6.551724137931035,
320
+ "grad_norm": 1.7474387884140015,
321
+ "learning_rate": 1.4285714285714286e-06,
322
+ "loss": 0.0821,
323
+ "step": 190
324
+ },
325
+ {
326
+ "epoch": 6.724137931034483,
327
+ "grad_norm": 3.119471788406372,
328
+ "learning_rate": 8.791208791208792e-07,
329
+ "loss": 0.0988,
330
+ "step": 195
331
+ },
332
+ {
333
+ "epoch": 6.896551724137931,
334
+ "grad_norm": 1.1896252632141113,
335
+ "learning_rate": 3.296703296703297e-07,
336
+ "loss": 0.0691,
337
+ "step": 200
338
+ },
339
+ {
340
+ "epoch": 7.0,
341
+ "eval_loss": 0.14303971827030182,
342
+ "eval_runtime": 1.4807,
343
+ "eval_samples_per_second": 77.664,
344
+ "eval_steps_per_second": 2.701,
345
+ "step": 203
346
+ }
347
+ ],
348
+ "logging_steps": 5,
349
+ "max_steps": 203,
350
+ "num_input_tokens_seen": 0,
351
+ "num_train_epochs": 7,
352
+ "save_steps": 500,
353
+ "stateful_callbacks": {
354
+ "EarlyStoppingCallback": {
355
+ "args": {
356
+ "early_stopping_patience": 5,
357
+ "early_stopping_threshold": 0.01
358
+ },
359
+ "attributes": {
360
+ "early_stopping_patience_counter": 1
361
+ }
362
+ },
363
+ "TrainerControl": {
364
+ "args": {
365
+ "should_epoch_stop": false,
366
+ "should_evaluate": false,
367
+ "should_log": false,
368
+ "should_save": true,
369
+ "should_training_stop": true
370
+ },
371
+ "attributes": {}
372
+ }
373
+ },
374
+ "total_flos": 0.0,
375
+ "train_batch_size": 16,
376
+ "trial_name": null,
377
+ "trial_params": null
378
+ }
checkpoint-203/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b06298f5ab472894f023b5c1cf146845a081b66643e58450305b37ac7a30f28e
3
+ size 5624
checkpoint-203/unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b9be9d9e76440a3a74ade4f9b4f7c376e404d1f74a579553059d91dc4ef7406
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
runs/May22_12-44-19_r-nabil-tazi-ambiance-jp1-o73hkamg-cf8c1-dzdsf/events.out.tfevents.1747917864.r-nabil-tazi-ambiance-jp1-o73hkamg-cf8c1-dzdsf.105.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f54330c0e3cab50284e54362e4b2b478178eec0bcf9dcbe05ab53499e5eaf9bf
3
- size 12834
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3811da47384377061822a0469b5675bf5a43cbd933251c8a5e6a3b6a3dce7d59
3
+ size 14996
runs/May22_12-44-19_r-nabil-tazi-ambiance-jp1-o73hkamg-cf8c1-dzdsf/events.out.tfevents.1747918599.r-nabil-tazi-ambiance-jp1-o73hkamg-cf8c1-dzdsf.105.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37e0d0a65bfc69f3261c2b7932f7293080702d8f69dd1366e04a47bb725ddbae
3
+ size 359
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b06298f5ab472894f023b5c1cf146845a081b66643e58450305b37ac7a30f28e
3
+ size 5624
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-tckj2-dxpo0/autotrain-data",
3
+ "model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
4
+ "lr": 2e-05,
5
+ "epochs": 7,
6
+ "max_seq_length": 256,
7
+ "batch_size": 16,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-tckj2-dxpo0",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "nabil-tazi",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "pair_class",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260