--- library_name: peft license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: Summarization results: [] datasets: - abisee/cnn_dailymail language: - en metrics: - rouge - bleu --- # Summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.362 | 0.2229 | 500 | 1.4059 | | 1.3409 | 0.4458 | 1000 | 1.1536 | | 1.1552 | 0.6687 | 1500 | 1.1228 | | 1.1308 | 0.8916 | 2000 | 1.1134 | | 1.1192 | 1.1141 | 2500 | 1.1088 | | 1.1165 | 1.3370 | 3000 | 1.1061 | | 1.1147 | 1.5599 | 3500 | 1.1046 | | 1.1151 | 1.7828 | 4000 | 1.1039 | ### Framework versions - PEFT 0.14.0 - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0