--- library_name: transformers language: - uz license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium Uzbek results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: uz split: None args: 'config: uz, split: test' metrics: - name: Wer type: wer value: 38.19985168705969 --- # Whisper Medium Uzbek This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4148 - Wer: 38.1999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6553 | 0.5330 | 250 | 0.5830 | 51.2637 | | 0.3945 | 1.0661 | 500 | 0.4612 | 41.6914 | | 0.3352 | 1.5991 | 750 | 0.4360 | 42.0931 | | 0.2028 | 2.1322 | 1000 | 0.4155 | 38.1133 | | 0.1956 | 2.6652 | 1250 | 0.4081 | 37.6900 | | 0.1202 | 3.1983 | 1500 | 0.4148 | 38.1999 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0