--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: chem_ner_scratch results: [] --- # chem_ner_scratch This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0897 - Precision: 0.9527 - Recall: 0.9620 - F1: 0.9566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:| | 2.0777 | 0.9873 | 39 | 0.9136 | 0.3364 | 0.3755 | 0.3192 | | 2.0777 | 2.0 | 79 | 0.2245 | 0.8922 | 0.8075 | 0.8391 | | 0.8865 | 2.9620 | 117 | 0.0897 | 0.9527 | 0.9620 | 0.9566 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1