--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_6_1 metrics: - wer model-index: - name: wav2vec2-mms-1b-turkish-istech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_6_1 type: common_voice_6_1 config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.2458380145031151 --- # wav2vec2-mms-1b-turkish-istech This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1796 - Wer: 0.2458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 0.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.5172 | 0.0920 | 20 | 0.6350 | 0.4468 | | 0.3844 | 0.1839 | 40 | 0.2180 | 0.2687 | | 0.345 | 0.2759 | 60 | 0.1910 | 0.2566 | | 0.2855 | 0.3678 | 80 | 0.1854 | 0.2493 | | 0.3305 | 0.4598 | 100 | 0.1796 | 0.2458 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1