--- library_name: transformers language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-non-verbal-new-aug-low-lr results: [] --- # whisper-non-verbal-new-aug-low-lr This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0791 - Wer: 12.5759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0587 | 1.0 | 120 | 0.0751 | 267.9063 | | 0.0412 | 2.0 | 240 | 0.0598 | 9.8163 | | 0.0313 | 3.0 | 360 | 0.0661 | 11.9485 | | 0.0381 | 4.0 | 480 | 0.0791 | 12.5759 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2