update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- tweet_eval
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: tiny-vanilla-target-tweet
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: tweet_eval
|
18 |
+
type: tweet_eval
|
19 |
+
config: emotion
|
20 |
+
split: train
|
21 |
+
args: emotion
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.7032085561497327
|
26 |
+
- name: F1
|
27 |
+
type: f1
|
28 |
+
value: 0.704229444708009
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# tiny-vanilla-target-tweet
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the tweet_eval dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.9887
|
39 |
+
- Accuracy: 0.7032
|
40 |
+
- F1: 0.7042
|
41 |
+
|
42 |
+
## Model description
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Intended uses & limitations
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training and evaluation data
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training procedure
|
55 |
+
|
56 |
+
### Training hyperparameters
|
57 |
+
|
58 |
+
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 3e-05
|
60 |
+
- train_batch_size: 32
|
61 |
+
- eval_batch_size: 32
|
62 |
+
- seed: 42
|
63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
+
- lr_scheduler_type: constant
|
65 |
+
- num_epochs: 200
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
71 |
+
| 1.1604 | 4.9 | 500 | 0.9784 | 0.6604 | 0.6290 |
|
72 |
+
| 0.7656 | 9.8 | 1000 | 0.8273 | 0.7139 | 0.6905 |
|
73 |
+
| 0.534 | 14.71 | 1500 | 0.8138 | 0.7219 | 0.7143 |
|
74 |
+
| 0.3832 | 19.61 | 2000 | 0.8591 | 0.7086 | 0.7050 |
|
75 |
+
| 0.2722 | 24.51 | 2500 | 0.9250 | 0.7112 | 0.7118 |
|
76 |
+
| 0.1858 | 29.41 | 3000 | 0.9887 | 0.7032 | 0.7042 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.25.1
|
82 |
+
- Pytorch 1.12.1
|
83 |
+
- Datasets 2.7.1
|
84 |
+
- Tokenizers 0.13.2
|