--- language: en license: mit tags: - speech - audio - vocoder - hifigan - tts --- # HiFiGAN Finetuned Checkpoint This is a finetuned HiFiGAN model checkpoint for vocoder. ## Model Details - Base Model: HiFiGAN - Training Type: Finetuned from HuggingFace checkpoint - Sample Rate: 22050 Hz - Checkpoint Date: 2025-03-30 ## Files - `generator.ckpt`: The model weights - `hyperparams.yaml`: Model hyperparameters ## Usage ```python from speechbrain.lobes.models.HifiGAN import HifiganGenerator import torch from hyperpyyaml import load_hyperpyyaml # Load hyperparameters with open("hyperparams.yaml") as f: hparams = load_hyperpyyaml(f) # Initialize generator generator = HifiganGenerator( in_channels=hparams["in_channels"], out_channels=hparams["out_channels"], resblock_type=hparams["resblock_type"], resblock_dilation_sizes=hparams["resblock_dilation_sizes"], resblock_kernel_sizes=hparams["resblock_kernel_sizes"], upsample_kernel_sizes=hparams["upsample_kernel_sizes"], upsample_initial_channel=hparams["upsample_initial_channel"], upsample_factors=hparams["upsample_factors"], inference_padding=hparams["inference_padding"], cond_channels=hparams["cond_channels"], conv_post_bias=hparams["conv_post_bias"], ) # Load checkpoint generator.load_state_dict(torch.load("generator.ckpt")) generator.eval() ```