|
"""
|
|
Neural network modules for the HiFi-GAN: Generative Adversarial Networks for
|
|
Efficient and High Fidelity Speech Synthesis
|
|
|
|
For more details: https://arxiv.org/pdf/2010.05646.pdf, https://arxiv.org/abs/2406.10735
|
|
|
|
Authors
|
|
* Jarod Duret 2021
|
|
* Yingzhi WANG 2022
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
|
|
"""This function computes the number of elements to add for zero-padding.
|
|
|
|
Arguments
|
|
---------
|
|
L_in : int
|
|
stride: int
|
|
kernel_size : int
|
|
dilation : int
|
|
|
|
Returns
|
|
-------
|
|
padding : int
|
|
The size of the padding to be added
|
|
"""
|
|
if stride > 1:
|
|
padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]
|
|
|
|
else:
|
|
L_out = (
|
|
math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
|
|
)
|
|
padding = [
|
|
math.floor((L_in - L_out) / 2),
|
|
math.floor((L_in - L_out) / 2),
|
|
]
|
|
return padding
|
|
|
|
|
|
def get_padding_elem_transposed(
|
|
L_out: int,
|
|
L_in: int,
|
|
stride: int,
|
|
kernel_size: int,
|
|
dilation: int,
|
|
output_padding: int,
|
|
):
|
|
"""This function computes the required padding size for transposed convolution
|
|
|
|
Arguments
|
|
---------
|
|
L_out : int
|
|
L_in : int
|
|
stride: int
|
|
kernel_size : int
|
|
dilation : int
|
|
output_padding : int
|
|
|
|
Returns
|
|
-------
|
|
padding : int
|
|
The size of the padding to be applied
|
|
"""
|
|
|
|
padding = -0.5 * (
|
|
L_out
|
|
- (L_in - 1) * stride
|
|
- dilation * (kernel_size - 1)
|
|
- output_padding
|
|
- 1
|
|
)
|
|
return int(padding)
|
|
|
|
|
|
class Conv1d(nn.Module):
|
|
"""This function implements 1d convolution.
|
|
|
|
Arguments
|
|
---------
|
|
out_channels : int
|
|
It is the number of output channels.
|
|
kernel_size : int
|
|
Kernel size of the convolutional filters.
|
|
input_shape : tuple
|
|
The shape of the input. Alternatively use ``in_channels``.
|
|
in_channels : int
|
|
The number of input channels. Alternatively use ``input_shape``.
|
|
stride : int
|
|
Stride factor of the convolutional filters. When the stride factor > 1,
|
|
a decimation in time is performed.
|
|
dilation : int
|
|
Dilation factor of the convolutional filters.
|
|
padding : str
|
|
(same, valid, causal). If "valid", no padding is performed.
|
|
If "same" and stride is 1, output shape is the same as the input shape.
|
|
"causal" results in causal (dilated) convolutions.
|
|
groups : int
|
|
Number of blocked connections from input channels to output channels.
|
|
bias : bool
|
|
Whether to add a bias term to convolution operation.
|
|
padding_mode : str
|
|
This flag specifies the type of padding. See torch.nn documentation
|
|
for more information.
|
|
skip_transpose : bool
|
|
If False, uses batch x time x channel convention of speechbrain.
|
|
If True, uses batch x channel x time convention.
|
|
weight_norm : bool
|
|
If True, use weight normalization,
|
|
to be removed with self.remove_weight_norm() at inference
|
|
conv_init : str
|
|
Weight initialization for the convolution network
|
|
default_padding: str or int
|
|
This sets the default padding mode that will be used by the pytorch Conv1d backend.
|
|
|
|
Example
|
|
-------
|
|
>>> inp_tensor = torch.rand([10, 40, 16])
|
|
>>> cnn_1d = Conv1d(
|
|
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5
|
|
... )
|
|
>>> out_tensor = cnn_1d(inp_tensor)
|
|
>>> out_tensor.shape
|
|
torch.Size([10, 40, 8])
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
out_channels,
|
|
kernel_size,
|
|
input_shape=None,
|
|
in_channels=None,
|
|
stride=1,
|
|
dilation=1,
|
|
padding="same",
|
|
groups=1,
|
|
bias=True,
|
|
padding_mode="reflect",
|
|
skip_transpose=False,
|
|
weight_norm=False,
|
|
conv_init=None,
|
|
default_padding=0,
|
|
):
|
|
super().__init__()
|
|
self.kernel_size = kernel_size
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.padding = padding
|
|
self.padding_mode = padding_mode
|
|
self.unsqueeze = False
|
|
self.skip_transpose = skip_transpose
|
|
|
|
if input_shape is None and in_channels is None:
|
|
raise ValueError("Must provide one of input_shape or in_channels")
|
|
|
|
if in_channels is None:
|
|
in_channels = self._check_input_shape(input_shape)
|
|
|
|
self.in_channels = in_channels
|
|
|
|
self.conv = nn.Conv1d(
|
|
in_channels,
|
|
out_channels,
|
|
self.kernel_size,
|
|
stride=self.stride,
|
|
dilation=self.dilation,
|
|
padding=default_padding,
|
|
groups=groups,
|
|
bias=bias,
|
|
)
|
|
|
|
if conv_init == "kaiming":
|
|
nn.init.kaiming_normal_(self.conv.weight)
|
|
elif conv_init == "zero":
|
|
nn.init.zeros_(self.conv.weight)
|
|
elif conv_init == "normal":
|
|
nn.init.normal_(self.conv.weight, std=1e-6)
|
|
|
|
if weight_norm:
|
|
self.conv = nn.utils.weight_norm(self.conv)
|
|
|
|
def forward(self, x):
|
|
"""Returns the output of the convolution.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor (batch, time, channel)
|
|
input to convolve. 2d or 4d tensors are expected.
|
|
|
|
Returns
|
|
-------
|
|
wx : torch.Tensor
|
|
The convolved outputs.
|
|
"""
|
|
if not self.skip_transpose:
|
|
x = x.transpose(1, -1)
|
|
|
|
if self.unsqueeze:
|
|
x = x.unsqueeze(1)
|
|
|
|
if self.padding == "same":
|
|
x = self._manage_padding(
|
|
x, self.kernel_size, self.dilation, self.stride
|
|
)
|
|
|
|
elif self.padding == "causal":
|
|
num_pad = (self.kernel_size - 1) * self.dilation
|
|
x = F.pad(x, (num_pad, 0))
|
|
|
|
elif self.padding == "valid":
|
|
pass
|
|
|
|
else:
|
|
raise ValueError(
|
|
"Padding must be 'same', 'valid' or 'causal'. Got "
|
|
+ self.padding
|
|
)
|
|
|
|
wx = self.conv(x)
|
|
|
|
if self.unsqueeze:
|
|
wx = wx.squeeze(1)
|
|
|
|
if not self.skip_transpose:
|
|
wx = wx.transpose(1, -1)
|
|
|
|
return wx
|
|
|
|
def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
|
|
"""This function performs zero-padding on the time axis
|
|
such that their lengths is unchanged after the convolution.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor
|
|
Input tensor.
|
|
kernel_size : int
|
|
Size of kernel.
|
|
dilation : int
|
|
Dilation used.
|
|
stride : int
|
|
Stride.
|
|
|
|
Returns
|
|
-------
|
|
x : torch.Tensor
|
|
The padded outputs.
|
|
"""
|
|
|
|
|
|
L_in = self.in_channels
|
|
|
|
|
|
padding = get_padding_elem(L_in, stride, kernel_size, dilation)
|
|
|
|
|
|
x = F.pad(x, padding, mode=self.padding_mode)
|
|
|
|
return x
|
|
|
|
def _check_input_shape(self, shape):
|
|
"""Checks the input shape and returns the number of input channels."""
|
|
|
|
if len(shape) == 2:
|
|
self.unsqueeze = True
|
|
in_channels = 1
|
|
elif self.skip_transpose:
|
|
in_channels = shape[1]
|
|
elif len(shape) == 3:
|
|
in_channels = shape[2]
|
|
else:
|
|
raise ValueError(
|
|
"conv1d expects 2d, 3d inputs. Got " + str(len(shape))
|
|
)
|
|
|
|
|
|
if not self.padding == "valid" and self.kernel_size % 2 == 0:
|
|
raise ValueError(
|
|
"The field kernel size must be an odd number. Got %s."
|
|
% (self.kernel_size)
|
|
)
|
|
|
|
return in_channels
|
|
|
|
def remove_weight_norm(self):
|
|
"""Removes weight normalization at inference if used during training."""
|
|
self.conv = nn.utils.remove_weight_norm(self.conv)
|
|
|
|
|
|
class Conv2d(nn.Module):
|
|
"""This function implements 2d convolution.
|
|
|
|
Arguments
|
|
---------
|
|
out_channels : int
|
|
It is the number of output channels.
|
|
kernel_size : tuple
|
|
Kernel size of the 2d convolutional filters over time and frequency
|
|
axis.
|
|
input_shape : tuple
|
|
The shape of the input. Alternatively use ``in_channels``.
|
|
in_channels : int
|
|
The number of input channels. Alternatively use ``input_shape``.
|
|
stride: int
|
|
Stride factor of the 2d convolutional filters over time and frequency
|
|
axis.
|
|
dilation : int
|
|
Dilation factor of the 2d convolutional filters over time and
|
|
frequency axis.
|
|
padding : str
|
|
(same, valid, causal).
|
|
If "valid", no padding is performed.
|
|
If "same" and stride is 1, output shape is same as input shape.
|
|
If "causal" then proper padding is inserted to simulate causal convolution on the first spatial dimension.
|
|
(spatial dim 1 is dim 3 for both skip_transpose=False and skip_transpose=True)
|
|
groups : int
|
|
This option specifies the convolutional groups. See torch.nn
|
|
documentation for more information.
|
|
bias : bool
|
|
If True, the additive bias b is adopted.
|
|
padding_mode : str
|
|
This flag specifies the type of padding. See torch.nn documentation
|
|
for more information.
|
|
max_norm : float
|
|
kernel max-norm.
|
|
swap : bool
|
|
If True, the convolution is done with the format (B, C, W, H).
|
|
If False, the convolution is dine with (B, H, W, C).
|
|
Active only if skip_transpose is False.
|
|
skip_transpose : bool
|
|
If False, uses batch x spatial.dim2 x spatial.dim1 x channel convention of speechbrain.
|
|
If True, uses batch x channel x spatial.dim1 x spatial.dim2 convention.
|
|
weight_norm : bool
|
|
If True, use weight normalization,
|
|
to be removed with self.remove_weight_norm() at inference
|
|
conv_init : str
|
|
Weight initialization for the convolution network
|
|
|
|
Example
|
|
-------
|
|
>>> inp_tensor = torch.rand([10, 40, 16, 8])
|
|
>>> cnn_2d = Conv2d(
|
|
... input_shape=inp_tensor.shape, out_channels=5, kernel_size=(7, 3)
|
|
... )
|
|
>>> out_tensor = cnn_2d(inp_tensor)
|
|
>>> out_tensor.shape
|
|
torch.Size([10, 40, 16, 5])
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
out_channels,
|
|
kernel_size,
|
|
input_shape=None,
|
|
in_channels=None,
|
|
stride=(1, 1),
|
|
dilation=(1, 1),
|
|
padding="same",
|
|
groups=1,
|
|
bias=True,
|
|
padding_mode="reflect",
|
|
max_norm=None,
|
|
swap=False,
|
|
skip_transpose=False,
|
|
weight_norm=False,
|
|
conv_init=None,
|
|
):
|
|
super().__init__()
|
|
|
|
|
|
if isinstance(kernel_size, int):
|
|
kernel_size = (kernel_size, kernel_size)
|
|
if isinstance(stride, int):
|
|
stride = (stride, stride)
|
|
if isinstance(dilation, int):
|
|
dilation = (dilation, dilation)
|
|
|
|
self.kernel_size = kernel_size
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.padding = padding
|
|
self.padding_mode = padding_mode
|
|
self.unsqueeze = False
|
|
self.max_norm = max_norm
|
|
self.swap = swap
|
|
self.skip_transpose = skip_transpose
|
|
|
|
if input_shape is None and in_channels is None:
|
|
raise ValueError("Must provide one of input_shape or in_channels")
|
|
|
|
if in_channels is None:
|
|
in_channels = self._check_input(input_shape)
|
|
|
|
self.in_channels = in_channels
|
|
|
|
|
|
self.conv = nn.Conv2d(
|
|
self.in_channels,
|
|
out_channels,
|
|
self.kernel_size,
|
|
stride=self.stride,
|
|
padding=0,
|
|
dilation=self.dilation,
|
|
groups=groups,
|
|
bias=bias,
|
|
)
|
|
|
|
if conv_init == "kaiming":
|
|
nn.init.kaiming_normal_(self.conv.weight)
|
|
elif conv_init == "zero":
|
|
nn.init.zeros_(self.conv.weight)
|
|
|
|
if weight_norm:
|
|
self.conv = nn.utils.weight_norm(self.conv)
|
|
|
|
def forward(self, x):
|
|
"""Returns the output of the convolution.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor (batch, time, channel)
|
|
input to convolve. 2d or 4d tensors are expected.
|
|
|
|
Returns
|
|
-------
|
|
x : torch.Tensor
|
|
The output of the convolution.
|
|
"""
|
|
if not self.skip_transpose:
|
|
x = x.transpose(1, -1)
|
|
if self.swap:
|
|
x = x.transpose(-1, -2)
|
|
|
|
if self.unsqueeze:
|
|
x = x.unsqueeze(1)
|
|
|
|
if self.padding == "same":
|
|
x = self._manage_padding(
|
|
x, self.kernel_size, self.dilation, self.stride
|
|
)
|
|
|
|
elif self.padding == "causal":
|
|
num_pad = (self.kernel_size[0] - 1) * self.dilation[1]
|
|
x = F.pad(x, (0, 0, num_pad, 0))
|
|
|
|
elif self.padding == "valid":
|
|
pass
|
|
|
|
else:
|
|
raise ValueError(
|
|
"Padding must be 'same','valid' or 'causal'. Got "
|
|
+ self.padding
|
|
)
|
|
|
|
if self.max_norm is not None:
|
|
self.conv.weight.data = torch.renorm(
|
|
self.conv.weight.data, p=2, dim=0, maxnorm=self.max_norm
|
|
)
|
|
|
|
wx = self.conv(x)
|
|
|
|
if self.unsqueeze:
|
|
wx = wx.squeeze(1)
|
|
|
|
if not self.skip_transpose:
|
|
wx = wx.transpose(1, -1)
|
|
if self.swap:
|
|
wx = wx.transpose(1, 2)
|
|
return wx
|
|
|
|
def _manage_padding(
|
|
self,
|
|
x,
|
|
kernel_size: Tuple[int, int],
|
|
dilation: Tuple[int, int],
|
|
stride: Tuple[int, int],
|
|
):
|
|
"""This function performs zero-padding on the time and frequency axes
|
|
such that their lengths is unchanged after the convolution.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor
|
|
Input to be padded
|
|
kernel_size : int
|
|
Size of the kernel for computing padding
|
|
dilation : int
|
|
Dilation rate for computing padding
|
|
stride: int
|
|
Stride for computing padding
|
|
|
|
Returns
|
|
-------
|
|
x : torch.Tensor
|
|
The padded outputs.
|
|
"""
|
|
|
|
L_in = self.in_channels
|
|
|
|
|
|
padding_time = get_padding_elem(
|
|
L_in, stride[-1], kernel_size[-1], dilation[-1]
|
|
)
|
|
|
|
padding_freq = get_padding_elem(
|
|
L_in, stride[-2], kernel_size[-2], dilation[-2]
|
|
)
|
|
padding = padding_time + padding_freq
|
|
|
|
|
|
x = nn.functional.pad(x, padding, mode=self.padding_mode)
|
|
|
|
return x
|
|
|
|
def _check_input(self, shape):
|
|
"""Checks the input shape and returns the number of input channels."""
|
|
|
|
if len(shape) == 3:
|
|
self.unsqueeze = True
|
|
in_channels = 1
|
|
|
|
elif len(shape) == 4:
|
|
in_channels = shape[3]
|
|
|
|
else:
|
|
raise ValueError("Expected 3d or 4d inputs. Got " + len(shape))
|
|
|
|
|
|
if not self.padding == "valid" and (
|
|
self.kernel_size[0] % 2 == 0 or self.kernel_size[1] % 2 == 0
|
|
):
|
|
raise ValueError(
|
|
"The field kernel size must be an odd number. Got %s."
|
|
% (self.kernel_size)
|
|
)
|
|
|
|
return in_channels
|
|
|
|
def remove_weight_norm(self):
|
|
"""Removes weight normalization at inference if used during training."""
|
|
self.conv = nn.utils.remove_weight_norm(self.conv)
|
|
|
|
|
|
class ConvTranspose1d(nn.Module):
|
|
"""This class implements 1d transposed convolution with speechbrain.
|
|
Transpose convolution is normally used to perform upsampling.
|
|
|
|
Arguments
|
|
---------
|
|
out_channels : int
|
|
It is the number of output channels.
|
|
kernel_size : int
|
|
Kernel size of the convolutional filters.
|
|
input_shape : tuple
|
|
The shape of the input. Alternatively use ``in_channels``.
|
|
in_channels : int
|
|
The number of input channels. Alternatively use ``input_shape``.
|
|
stride : int
|
|
Stride factor of the convolutional filters. When the stride factor > 1,
|
|
upsampling in time is performed.
|
|
dilation : int
|
|
Dilation factor of the convolutional filters.
|
|
padding : str or int
|
|
To have in output the target dimension, we suggest tuning the kernel
|
|
size and the padding properly. We also support the following function
|
|
to have some control over the padding and the corresponding output
|
|
dimensionality.
|
|
if "valid", no padding is applied
|
|
if "same", padding amount is inferred so that the output size is closest
|
|
to possible to input size. Note that for some kernel_size / stride combinations
|
|
it is not possible to obtain the exact same size, but we return the closest
|
|
possible size.
|
|
if "factor", padding amount is inferred so that the output size is closest
|
|
to inputsize*stride. Note that for some kernel_size / stride combinations
|
|
it is not possible to obtain the exact size, but we return the closest
|
|
possible size.
|
|
if an integer value is entered, a custom padding is used.
|
|
output_padding : int,
|
|
Additional size added to one side of the output shape
|
|
groups: int
|
|
Number of blocked connections from input channels to output channels.
|
|
Default: 1
|
|
bias: bool
|
|
If True, adds a learnable bias to the output
|
|
skip_transpose : bool
|
|
If False, uses batch x time x channel convention of speechbrain.
|
|
If True, uses batch x channel x time convention.
|
|
weight_norm : bool
|
|
If True, use weight normalization,
|
|
to be removed with self.remove_weight_norm() at inference
|
|
|
|
Example
|
|
-------
|
|
>>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d
|
|
>>> inp_tensor = torch.rand([10, 12, 40]) #[batch, time, fea]
|
|
>>> convtranspose_1d = ConvTranspose1d(
|
|
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=3, stride=2
|
|
... )
|
|
>>> out_tensor = convtranspose_1d(inp_tensor)
|
|
>>> out_tensor.shape
|
|
torch.Size([10, 25, 8])
|
|
|
|
>>> # Combination of Conv1d and ConvTranspose1d
|
|
>>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d
|
|
>>> signal = torch.tensor([1,100])
|
|
>>> signal = torch.rand([1,100]) #[batch, time]
|
|
>>> conv1d = Conv1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2)
|
|
>>> conv_out = conv1d(signal)
|
|
>>> conv_t = ConvTranspose1d(input_shape=conv_out.shape, out_channels=1, kernel_size=3, stride=2, padding=1)
|
|
>>> signal_rec = conv_t(conv_out, output_size=[100])
|
|
>>> signal_rec.shape
|
|
torch.Size([1, 100])
|
|
|
|
>>> signal = torch.rand([1,115]) #[batch, time]
|
|
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding='same')
|
|
>>> signal_rec = conv_t(signal)
|
|
>>> signal_rec.shape
|
|
torch.Size([1, 115])
|
|
|
|
>>> signal = torch.rand([1,115]) #[batch, time]
|
|
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='valid')
|
|
>>> signal_rec = conv_t(signal)
|
|
>>> signal_rec.shape
|
|
torch.Size([1, 235])
|
|
|
|
>>> signal = torch.rand([1,115]) #[batch, time]
|
|
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='factor')
|
|
>>> signal_rec = conv_t(signal)
|
|
>>> signal_rec.shape
|
|
torch.Size([1, 231])
|
|
|
|
>>> signal = torch.rand([1,115]) #[batch, time]
|
|
>>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding=10)
|
|
>>> signal_rec = conv_t(signal)
|
|
>>> signal_rec.shape
|
|
torch.Size([1, 211])
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
out_channels,
|
|
kernel_size,
|
|
input_shape=None,
|
|
in_channels=None,
|
|
stride=1,
|
|
dilation=1,
|
|
padding=0,
|
|
output_padding=0,
|
|
groups=1,
|
|
bias=True,
|
|
skip_transpose=False,
|
|
weight_norm=False,
|
|
):
|
|
super().__init__()
|
|
self.kernel_size = kernel_size
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.padding = padding
|
|
self.unsqueeze = False
|
|
self.skip_transpose = skip_transpose
|
|
|
|
if input_shape is None and in_channels is None:
|
|
raise ValueError("Must provide one of input_shape or in_channels")
|
|
|
|
if in_channels is None:
|
|
in_channels = self._check_input_shape(input_shape)
|
|
|
|
if self.padding == "same":
|
|
L_in = input_shape[-1] if skip_transpose else input_shape[1]
|
|
padding_value = get_padding_elem_transposed(
|
|
L_in,
|
|
L_in,
|
|
stride=stride,
|
|
kernel_size=kernel_size,
|
|
dilation=dilation,
|
|
output_padding=output_padding,
|
|
)
|
|
elif self.padding == "factor":
|
|
L_in = input_shape[-1] if skip_transpose else input_shape[1]
|
|
padding_value = get_padding_elem_transposed(
|
|
L_in * stride,
|
|
L_in,
|
|
stride=stride,
|
|
kernel_size=kernel_size,
|
|
dilation=dilation,
|
|
output_padding=output_padding,
|
|
)
|
|
elif self.padding == "valid":
|
|
padding_value = 0
|
|
elif type(self.padding) is int:
|
|
padding_value = padding
|
|
else:
|
|
raise ValueError("Not supported padding type")
|
|
|
|
self.conv = nn.ConvTranspose1d(
|
|
in_channels,
|
|
out_channels,
|
|
self.kernel_size,
|
|
stride=self.stride,
|
|
dilation=self.dilation,
|
|
padding=padding_value,
|
|
groups=groups,
|
|
bias=bias,
|
|
)
|
|
|
|
if weight_norm:
|
|
self.conv = nn.utils.weight_norm(self.conv)
|
|
|
|
def forward(self, x, output_size=None):
|
|
"""Returns the output of the convolution.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor (batch, time, channel)
|
|
input to convolve. 2d or 4d tensors are expected.
|
|
output_size : int
|
|
The size of the output
|
|
|
|
Returns
|
|
-------
|
|
x : torch.Tensor
|
|
The convolved output
|
|
"""
|
|
|
|
if not self.skip_transpose:
|
|
x = x.transpose(1, -1)
|
|
|
|
if self.unsqueeze:
|
|
x = x.unsqueeze(1)
|
|
|
|
wx = self.conv(x, output_size=output_size)
|
|
|
|
if self.unsqueeze:
|
|
wx = wx.squeeze(1)
|
|
|
|
if not self.skip_transpose:
|
|
wx = wx.transpose(1, -1)
|
|
|
|
return wx
|
|
|
|
def _check_input_shape(self, shape):
|
|
"""Checks the input shape and returns the number of input channels."""
|
|
|
|
if len(shape) == 2:
|
|
self.unsqueeze = True
|
|
in_channels = 1
|
|
elif self.skip_transpose:
|
|
in_channels = shape[1]
|
|
elif len(shape) == 3:
|
|
in_channels = shape[2]
|
|
else:
|
|
raise ValueError(
|
|
"conv1d expects 2d, 3d inputs. Got " + str(len(shape))
|
|
)
|
|
|
|
return in_channels
|
|
|
|
def remove_weight_norm(self):
|
|
"""Removes weight normalization at inference if used during training."""
|
|
self.conv = nn.utils.remove_weight_norm(self.conv)
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
"""
|
|
Residual Block Type 1, which has 3 convolutional layers in each convolution block.
|
|
|
|
Arguments
|
|
---------
|
|
channels : int
|
|
number of hidden channels for the convolutional layers.
|
|
kernel_size : int
|
|
size of the convolution filter in each layer.
|
|
dilation : list
|
|
list of dilation value for each conv layer in a block.
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
super().__init__()
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=dilation[0],
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=dilation[1],
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=dilation[2],
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=1,
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=1,
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=1,
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""Returns the output of ResBlock1
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor (batch, channel, time)
|
|
input tensor.
|
|
|
|
Returns
|
|
-------
|
|
The ResBlock outputs
|
|
"""
|
|
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
"""This functions removes weight normalization during inference."""
|
|
for layer in self.convs1:
|
|
layer.remove_weight_norm()
|
|
for layer in self.convs2:
|
|
layer.remove_weight_norm()
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
"""
|
|
Residual Block Type 2, which has 2 convolutional layers in each convolution block.
|
|
|
|
Arguments
|
|
---------
|
|
channels : int
|
|
number of hidden channels for the convolutional layers.
|
|
kernel_size : int
|
|
size of the convolution filter in each layer.
|
|
dilation : list
|
|
list of dilation value for each conv layer in a block.
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=dilation[0],
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
Conv1d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
dilation=dilation[1],
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""Returns the output of ResBlock1
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor (batch, channel, time)
|
|
input tensor.
|
|
|
|
Returns
|
|
-------
|
|
The ResBlock outputs
|
|
"""
|
|
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
"""This functions removes weight normalization during inference."""
|
|
for layer in self.convs:
|
|
layer.remove_weight_norm()
|
|
|
|
|
|
class HiFiGANArabicGenerator(torch.nn.Module):
|
|
"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
|
|
|
Arguments
|
|
---------
|
|
in_channels : int
|
|
number of input tensor channels.
|
|
out_channels : int
|
|
number of output tensor channels.
|
|
resblock_type : str
|
|
type of the `ResBlock`. '1' or '2'.
|
|
resblock_dilation_sizes : List[List[int]]
|
|
list of dilation values in each layer of a `ResBlock`.
|
|
resblock_kernel_sizes : List[int]
|
|
list of kernel sizes for each `ResBlock`.
|
|
upsample_kernel_sizes : List[int]
|
|
list of kernel sizes for each transposed convolution.
|
|
upsample_initial_channel : int
|
|
number of channels for the first upsampling layer. This is divided by 2
|
|
for each consecutive upsampling layer.
|
|
upsample_factors : List[int]
|
|
upsampling factors (stride) for each upsampling layer.
|
|
inference_padding : int
|
|
constant padding applied to the input at inference time. Defaults to 5.
|
|
cond_channels : int
|
|
If provided, adds a conv layer to the beginning of the forward.
|
|
conv_post_bias : bool
|
|
Whether to add a bias term to the final conv.
|
|
|
|
Example
|
|
-------
|
|
>>> inp_tensor = torch.rand([4, 80, 33])
|
|
>>> hifigan_generator= HifiganGenerator(
|
|
... in_channels = 80,
|
|
... out_channels = 1,
|
|
... resblock_type = "1",
|
|
... resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
... resblock_kernel_sizes = [3, 7, 11],
|
|
... upsample_kernel_sizes = [16, 16, 4, 4],
|
|
... upsample_initial_channel = 512,
|
|
... upsample_factors = [8, 8, 2, 2],
|
|
... )
|
|
>>> out_tensor = hifigan_generator(inp_tensor)
|
|
>>> out_tensor.shape
|
|
torch.Size([4, 1, 8448])
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
resblock_type,
|
|
resblock_dilation_sizes,
|
|
resblock_kernel_sizes,
|
|
upsample_kernel_sizes,
|
|
upsample_initial_channel,
|
|
upsample_factors,
|
|
inference_padding=5,
|
|
cond_channels=0,
|
|
conv_post_bias=True,
|
|
):
|
|
super().__init__()
|
|
self.inference_padding = inference_padding
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_factors)
|
|
|
|
self.conv_pre = Conv1d(
|
|
in_channels=in_channels,
|
|
out_channels=upsample_initial_channel,
|
|
kernel_size=7,
|
|
stride=1,
|
|
padding="same",
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
)
|
|
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(
|
|
zip(upsample_factors, upsample_kernel_sizes)
|
|
):
|
|
self.ups.append(
|
|
ConvTranspose1d(
|
|
in_channels=upsample_initial_channel // (2**i),
|
|
out_channels=upsample_initial_channel // (2 ** (i + 1)),
|
|
kernel_size=k,
|
|
stride=u,
|
|
padding=(k - u) // 2,
|
|
skip_transpose=True,
|
|
weight_norm=True,
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for _, (k, d) in enumerate(
|
|
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
|
):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
|
|
self.conv_post = Conv1d(
|
|
in_channels=ch,
|
|
out_channels=1,
|
|
kernel_size=7,
|
|
stride=1,
|
|
padding="same",
|
|
skip_transpose=True,
|
|
bias=conv_post_bias,
|
|
weight_norm=True,
|
|
)
|
|
if cond_channels > 0:
|
|
self.cond_layer = Conv1d(
|
|
in_channels=cond_channels,
|
|
out_channels=upsample_initial_channel,
|
|
kernel_size=1,
|
|
)
|
|
|
|
def forward(self, x, g=None):
|
|
"""
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor (batch, channel, time)
|
|
feature input tensor.
|
|
g : torch.Tensor (batch, 1, time)
|
|
global conditioning input tensor.
|
|
|
|
Returns
|
|
-------
|
|
The generator outputs
|
|
"""
|
|
|
|
o = self.conv_pre(x)
|
|
if hasattr(self, "cond_layer"):
|
|
o = o + self.cond_layer(g)
|
|
for i in range(self.num_upsamples):
|
|
o = F.leaky_relu(o, LRELU_SLOPE)
|
|
o = self.ups[i](o)
|
|
z_sum = None
|
|
for j in range(self.num_kernels):
|
|
if z_sum is None:
|
|
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
|
else:
|
|
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
|
o = z_sum / self.num_kernels
|
|
o = F.leaky_relu(o)
|
|
o = self.conv_post(o)
|
|
o = torch.tanh(o)
|
|
return o
|
|
|
|
def remove_weight_norm(self):
|
|
"""This functions removes weight normalization during inference."""
|
|
|
|
for layer in self.ups:
|
|
layer.remove_weight_norm()
|
|
for layer in self.resblocks:
|
|
layer.remove_weight_norm()
|
|
self.conv_pre.remove_weight_norm()
|
|
self.conv_post.remove_weight_norm()
|
|
|
|
@torch.no_grad()
|
|
def inference(self, c, padding=True):
|
|
"""The inference function performs a padding and runs the forward method.
|
|
|
|
Arguments
|
|
---------
|
|
c : torch.Tensor (batch, channel, time)
|
|
feature input tensor.
|
|
padding : bool
|
|
Whether to pad tensor before forward.
|
|
|
|
Returns
|
|
-------
|
|
The generator outputs
|
|
"""
|
|
if padding:
|
|
c = torch.nn.functional.pad(
|
|
c, (self.inference_padding, self.inference_padding), "replicate"
|
|
)
|
|
return self.forward(c)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, checkpoint_path, config_path=None, device='cpu'):
|
|
if config_path is None:
|
|
config_path = os.path.join(os.path.dirname(__file__), "config.json")
|
|
with open(config_path, "r") as file:
|
|
config = json.load(file)
|
|
model = cls(**config)
|
|
ckpt = torch.load(checkpoint_path, map_location='cpu')
|
|
model.load_state_dict(ckpt)
|
|
return model.eval().to(device)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
gen = HifiganGenerator.from_pretrained("generator.ckpt", "config.json")
|
|
x = torch.rand(1, 80, 122)
|
|
mel = gen(x) |