muhammadnoman76 commited on
Commit
af5a5d5
·
verified ·
1 Parent(s): 89fbff3

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +137 -0
  2. configuration.json +67 -0
  3. pytorch_model.pt +3 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MakeItColor: Image Colorization Model
2
+
3
+ ## Model Description
4
+ **MakeItColor** is a deep learning model designed for automatic image colorization. It accepts grayscale images as input and generates vivid, realistic colorized outputs. Built with a PyTorch-based Convolutional Neural Network (CNN) architecture, it is seamlessly integrated with the **ModelScope** framework for easy deployment across various applications.
5
+
6
+ This model is inspired by and builds upon the work of [DDColor](https://github.com/piddnad/DDColor), utilizing a dual-encoder approach and trained on the **ImageNet-Val5k** dataset.
7
+
8
+ ---
9
+
10
+ ## Task
11
+ - **Image Colorization**
12
+
13
+ ## Framework
14
+ - **PyTorch**, **ModelScope**
15
+
16
+ ## Model Type
17
+ - **Convolutional Neural Network (CNN)**
18
+
19
+ ## Input
20
+ - **Grayscale images** (single-channel)
21
+
22
+ ## Output
23
+ - **Colorized images** (RGB format)
24
+
25
+ ---
26
+
27
+ ## Installation
28
+ Make sure you have **Python 3.7+** installed. Then, install the required dependencies:
29
+
30
+ ```bash
31
+ !pip install gradio
32
+ !pip install opencv-python
33
+ !pip install modelscope==1.12.0
34
+ !pip install datasets==2.14.7
35
+ !pip install pillow
36
+ !pip install numpy
37
+ !pip install gradio-imageslider
38
+ ```
39
+
40
+ ---
41
+
42
+ ## Usage
43
+
44
+ You can easily use **MakeItColor** through the ModelScope pipeline:
45
+
46
+ ```python
47
+ import cv2
48
+ from modelscope.pipelines import pipeline
49
+ from modelscope.utils.constant import Tasks
50
+
51
+ # Initialize the colorization pipeline
52
+ img_colorization = pipeline(Tasks.image_colorization, model='your-username/makeitcolor')
53
+
54
+ # Load a grayscale image
55
+ img_path = 'input.jpg'
56
+
57
+ # Run colorization
58
+ result = img_colorization(img_path)
59
+
60
+ # Save the colorized image
61
+ cv2.imwrite('result.png', result['output_img'])
62
+ ```
63
+
64
+ > **Note**:
65
+ > - Ensure that the input image (`input.jpg`) is a proper grayscale (single-channel) image.
66
+ > - The output (`result.png`) will be a standard RGB image.
67
+
68
+ ---
69
+
70
+ ## Model Files
71
+
72
+ The repository contains the following files:
73
+
74
+ - `pytorch_model.pt`: Pre-trained model weights.
75
+ - `configuration.json`: Model configuration file for ModelScope integration.
76
+ - `README.md`: This documentation file.
77
+
78
+ ---
79
+
80
+ ## Inference Requirements
81
+
82
+ - **Hardware**:
83
+ - CPU (supported)
84
+ - GPU (recommended for faster inference)
85
+
86
+ - **Software Dependencies**:
87
+ - `modelscope`
88
+ - `opencv-python`
89
+ - `torch`
90
+
91
+ ---
92
+
93
+ ## Input Format
94
+
95
+ - Grayscale images (`.png`, `.jpg`, etc.)
96
+
97
+ ### Example
98
+
99
+ 1. Prepare a grayscale image (e.g., `input.jpg`).
100
+ 2. Run the provided example code.
101
+ 3. Check the output file (`result.png`) for the colorized result.
102
+
103
+ ---
104
+
105
+ ## Limitations
106
+
107
+ - The model may struggle with highly complex, ambiguous, or abstract grayscale images.
108
+ - Performance and output quality depend on the clarity and details of the input.
109
+ - Primarily optimized for **natural images**; results may vary for synthetic or artistic inputs.
110
+
111
+ ---
112
+
113
+ ## Credits
114
+
115
+ This work builds upon and was inspired by the [DDColor project](https://github.com/piddnad/DDColor).
116
+ **MakeItColor** leverages a dual-encoder strategy from DDColor and is trained on the **ImageNet-Val5k** dataset.
117
+
118
+ Special thanks to the creators of DDColor for their foundational contributions.
119
+
120
+ ---
121
+
122
+ ## License
123
+
124
+ This project is licensed under the **Apache License 2.0**.
125
+
126
+ ---
127
+
128
+ ## Contact
129
+
130
+ For issues, questions, or feedback, feel free to:
131
+
132
+ - Open an issue on the [Hugging Face repository](#).
133
+ - Contact the maintainer directly at: **[[email protected]](mailto:[email protected])**
134
+
135
+ ---
136
+
137
+ **Developed by Muhammad Noman**
configuration.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "framework": "pytorch",
3
+
4
+ "task": "image-colorization",
5
+
6
+ "pipeline": {
7
+ "type": "ddcolor-image-colorization"
8
+ },
9
+
10
+ "model": {
11
+ "type": "ddcolor"
12
+ },
13
+
14
+ "dataset": {
15
+ "name": "imagenet-val5k-image",
16
+ "dataroot_gt": "val5k/",
17
+ "filename_tmpl": "{}",
18
+ "scale": 1,
19
+ "gt_size": 256
20
+ },
21
+
22
+ "train": {
23
+ "dataloader": {
24
+ "batch_size_per_gpu": 4,
25
+ "workers_per_gpu": 4,
26
+ "shuffle": true
27
+ },
28
+ "optimizer": {
29
+ "type": "AdamW",
30
+ "lr": 1e-6,
31
+ "weight_decay": 0.01,
32
+ "betas": [0.9, 0.99]
33
+ },
34
+ "lr_scheduler": {
35
+ "type": "CosineAnnealingLR",
36
+ "T_max": 200000,
37
+ "eta_min": 1e-7
38
+ },
39
+ "max_epochs": 2,
40
+ "hooks": [{
41
+ "type": "CheckpointHook",
42
+ "interval": 1
43
+ },
44
+ {
45
+ "type": "TextLoggerHook",
46
+ "interval": 1
47
+ },
48
+ {
49
+ "type": "IterTimerHook"
50
+ },
51
+ {
52
+ "type": "EvaluationHook",
53
+ "interval": 1
54
+ }
55
+ ]
56
+ },
57
+
58
+ "evaluation": {
59
+ "dataloader": {
60
+ "batch_size_per_gpu": 8,
61
+ "workers_per_gpu": 1,
62
+ "shuffle": false
63
+ },
64
+ "metrics": "image-colorization-metric"
65
+ }
66
+
67
+ }
pytorch_model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c460d7e55b32a598370621d77173be59e03c24b0823f06821db23a50c263ce
3
+ size 911950059