Commit
·
aa3ff27
verified
·
0
Parent(s):
initial commit
Browse files- .gitattributes +55 -0
- README.md +184 -0
.gitattributes
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
+
# Audio files - uncompressed
|
38 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
40 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
41 |
+
# Audio files - compressed
|
42 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
43 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
44 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
45 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
46 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
+
# Image files - uncompressed
|
48 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
49 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
50 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
52 |
+
# Image files - compressed
|
53 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- text-to-image
|
4 |
+
- lora
|
5 |
+
- diffusers
|
6 |
+
- template:diffusion-lora
|
7 |
+
widget:
|
8 |
+
- output:
|
9 |
+
url: images/Capture.PNG
|
10 |
+
text: '-'
|
11 |
+
base_model: QCRI/Fanar-1-9B
|
12 |
+
instance_prompt: null
|
13 |
+
license: apache-2.0
|
14 |
+
---
|
15 |
+
# Fanar-1-9B-Islamic-Inheritance-Reasoning
|
16 |
+
|
17 |
+
<Gallery />
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
# Fanar-1-9B-Islamic-Inheritance-Reasoning
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
This model was developed for **SubTask 1: Islamic Inheritance Reasoning** at **QIAS 2025**, a shared task evaluating Large Language Models (LLMs) in reasoning over Islamic inheritance law.
|
26 |
+
|
27 |
+
We fine-tuned the **Fanar-1-9B causal language model** using **Low-Rank Adaptation (LoRA)** and integrated it into a **Retrieval-Augmented Generation (RAG)** pipeline. The system is designed to handle the complexities of Islamic inheritance law, including:
|
28 |
+
|
29 |
+
* Understanding inheritance scenarios
|
30 |
+
* Identifying eligible heirs
|
31 |
+
* Applying fixed-share rules (farāʾiḍ)
|
32 |
+
* Performing precise inheritance calculations
|
33 |
+
|
34 |
+
To optimize for limited hardware, the model is loaded with **4-bit NF4 quantization (bitsandbytes)** while LoRA adapters are trained in higher precision. This approach allows large-model fine-tuning with significantly reduced GPU memory requirements.
|
35 |
+
|
36 |
+
By combining **domain-specific fine-tuning** with **retrieval grounding**, the model achieves strong reasoning capabilities while maintaining efficiency.
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Results
|
41 |
+
|
42 |
+
* **Final accuracy:** **85.8%** on the shared task evaluation set
|
43 |
+
* Outperforms strong baselines such as **GPT-4.5, LLaMA, Fanar (base), Mistral, and ALLaM** (evaluated in zero-shot prompting)
|
44 |
+
* Excels in **advanced reasoning** with **97.6% accuracy**, surpassing **Gemini 2.5** and **OpenAI’s o3**
|
45 |
+
* Demonstrates that **mid-scale Arabic LLMs**, when enhanced with retrieval and fine-tuning, can **outperform frontier models** in highly specialized domains
|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
## Citation
|
50 |
+
|
51 |
+
If you use this model, please cite:
|
52 |
+
|
53 |
+
```bibtex
|
54 |
+
@inproceedings{QU-NLP-QIAS2025,
|
55 |
+
author = {Mohammad AL-Smadi},
|
56 |
+
title = {QU-NLP at QIAS 2025 Shared Task: A Two-Phase LLM Fine-Tuning and Retrieval-Augmented Generation Approach for Islamic Inheritance Reasoning},
|
57 |
+
booktitle = {Proceedings of The Third Arabic Natural Language Processing Conference (ArabicNLP 2025)},
|
58 |
+
year = {2025},
|
59 |
+
publisher = {Association for Computational Linguistics},
|
60 |
+
note = {Suzhou, China, Nov 5--9},
|
61 |
+
url = {https://arabicnlp2025.sigarab.org/}
|
62 |
+
}
|
63 |
+
```
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
+
## Quick Start
|
68 |
+
|
69 |
+
### 1. Load Model + Adapter
|
70 |
+
|
71 |
+
```python
|
72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
73 |
+
from peft import PeftModel
|
74 |
+
import torch, re
|
75 |
+
|
76 |
+
BASE_MODEL = "QCRI/Fanar-1-9B"
|
77 |
+
ADAPTER_REPO = "msmadi/Fanar-1-9B-Islamic-Inheritance-Reasoning"
|
78 |
+
|
79 |
+
bnb = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
|
80 |
+
bnb_4bit_compute_dtype=torch.float16)
|
81 |
+
|
82 |
+
tok = AutoTokenizer.from_pretrained(ADAPTER_REPO, trust_remote_code=True)
|
83 |
+
if tok.pad_token_id is None:
|
84 |
+
tok.pad_token = tok.eos_token
|
85 |
+
|
86 |
+
base = AutoModelForCausalLM.from_pretrained(
|
87 |
+
BASE_MODEL,
|
88 |
+
device_map="auto",
|
89 |
+
quantization_config=bnb,
|
90 |
+
trust_remote_code=True,
|
91 |
+
attn_implementation="eager",
|
92 |
+
use_cache=False,
|
93 |
+
)
|
94 |
+
model = PeftModel.from_pretrained(base, ADAPTER_REPO).eval()
|
95 |
+
```
|
96 |
+
|
97 |
+
---
|
98 |
+
|
99 |
+
### 2. Prompt & Inference
|
100 |
+
|
101 |
+
```python
|
102 |
+
def format_context(docs):
|
103 |
+
if not docs: return ""
|
104 |
+
docs = [str(d)[:800] for d in docs[:3]]
|
105 |
+
return "المعلومات المرجعية من المصادر الإسلامية:\n" + "\n".join(f"• {doc}" for doc in docs) + "\n\n"
|
106 |
+
|
107 |
+
def prepare_prompt(question, options, context_docs=None):
|
108 |
+
letters = ['A','B','C','D','E','F'][:len(options)]
|
109 |
+
opts_text = "\n".join(f"{l}) {o}" for l,o in zip(letters, options))
|
110 |
+
context = format_context(context_docs)
|
111 |
+
|
112 |
+
system_msg = ("أنت خبير متخصص في أحكام الميراث الإسلامي والفرائض الشرعية. "
|
113 |
+
"تجيب بدقة واختصار اعتماداً على القرآن الكريم والسنة النبوية الشريفة. "
|
114 |
+
"اختر الإجابة الصحيحة من الخيارات المعطاة.")
|
115 |
+
user_msg = f"السؤال: {question}\n\nالخيارات:\n{opts_text}\n\nاختر الحرف الصحيح من ({', '.join(letters)}) فقط:"
|
116 |
+
|
117 |
+
messages = [{"role":"system","content":system_msg}]
|
118 |
+
if context: messages.append({"role":"system","content":context})
|
119 |
+
messages.append({"role":"user","content":user_msg})
|
120 |
+
|
121 |
+
try:
|
122 |
+
return tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
123 |
+
except:
|
124 |
+
return f"{context}{user_msg}\nالإجابة: "
|
125 |
+
|
126 |
+
def answer_mcq(question, options, context_docs=None, max_new_tokens=5, temperature=0.1):
|
127 |
+
prompt_text = prepare_prompt(question, options, context_docs)
|
128 |
+
inputs = tok(prompt_text, return_tensors="pt").to(model.device)
|
129 |
+
|
130 |
+
with torch.no_grad():
|
131 |
+
out = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature=temperature,
|
132 |
+
do_sample=False, pad_token_id=tok.eos_token_id)
|
133 |
+
|
134 |
+
gen = tok.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
135 |
+
match = re.findall(r"\b([A-F])\b", gen.upper())
|
136 |
+
return (match[0] if match else gen.strip()), gen
|
137 |
+
```
|
138 |
+
|
139 |
+
---
|
140 |
+
|
141 |
+
### 3. Example
|
142 |
+
|
143 |
+
```python
|
144 |
+
question = "توفيت امرأة وتركت: زوج، بنت، وأخ شقيق. كيف تُقسَّم التركة؟"
|
145 |
+
options = [
|
146 |
+
"الزوج 1/2، البنت النصف، ولا شيء للأخ",
|
147 |
+
"الزوج 1/4، البنت النصف، والأخ الباقي",
|
148 |
+
"الزوج 1/2، البنت 1/3، والأخ الباقي",
|
149 |
+
"الزوج 1/4، البنت 2/3، والأخ الباقي",
|
150 |
+
]
|
151 |
+
|
152 |
+
# Without RAG
|
153 |
+
letter, raw = answer_mcq(question, options)
|
154 |
+
print("Model answer:", letter)
|
155 |
+
print("Raw generation:", raw)
|
156 |
+
|
157 |
+
# With RAG context
|
158 |
+
retrieved = [
|
159 |
+
"للزوج النصف إذا لم يوجد فرع وارث. للبنت النصف إذا كانت منفردة. "
|
160 |
+
"إذا استوفيت الفروض فلا يبقى شيء للإخوة الأشقاء."
|
161 |
+
]
|
162 |
+
letter_rag, raw_rag = answer_mcq(question, options, context_docs=retrieved)
|
163 |
+
print("RAG answer:", letter_rag)
|
164 |
+
print("RAG raw generation:", raw_rag)
|
165 |
+
```
|
166 |
+
|
167 |
+
---
|
168 |
+
|
169 |
+
## Notes
|
170 |
+
|
171 |
+
* **RAG mode** (retrieving Islamic law references into context) yields the best performance.
|
172 |
+
* Keep `max_new_tokens` small (3–8) to bias the model toward answering with a single letter.
|
173 |
+
* If you publish a **merged checkpoint** (LoRA fused into base), the same functions work — just load the merged model instead of base+adapter.
|
174 |
+
|
175 |
+
---
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
## Download model
|
182 |
+
|
183 |
+
|
184 |
+
[Download](/msmadi/Fanar-1-9B-Islamic-Inheritance-Reasoning/tree/main) them in the Files & versions tab.
|