Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 269.05 +/- 7.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7906252404c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x790625240550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7906252405e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x790625240670>", "_build": "<function ActorCriticPolicy._build at 0x790625240700>", "forward": "<function ActorCriticPolicy.forward at 0x790625240790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x790625240820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7906252408b0>", "_predict": "<function ActorCriticPolicy._predict at 0x790625240940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7906252409d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x790625240a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x790625240af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7906251e3f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716019933238246497, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG0qLr7VYxM/1aUqPs5Zfr4ddfw88CJ9PQAAAAAAAAAAmgH1PNhutD+uTqk9n+iivjpm5j2kjzs9AAAAAAAAAAAzP8U8ww0BumgGVrnE+h6zlHsvuwClezgAAIA/AACAP20RbT6SE+g+GwmTvvvXZ77jvk29btdVPAAAAAAAAAAAGt1jPri+gz/KLi8+viezvm9Iiz4u9ae9AAAAAAAAAACAP3G9SIeNutRqqDQPXe8vfc/AuXt0TLMAAIA/AACAP2YOMbwp2Hq6W3rEu1rM+Dcn/K26SjHptgAAgD8AAIA/jVSFPY8OSromIla7cw/WN1YvpDrH1BE6AACAPwAAAAAzY4C9e8qourUwaTpAAFM1OYgZudrBhbkAAIA/AACAP+ZYEr4GY48/iOR/vl0dsr6Apoq+jlo9uwAAAAAAAAAATStSPktXTD9WXgE8kA6LvpHUGz5kMka9AAAAAAAAAACzdZ69x7oEPwRVKj7zcJe+RRqfPSvKx70AAAAAAAAAAPNvjb324FK6/n+Bt+KTR7LobPa6ABSYNgAAgD8AAIA/APvXPXQ/kz8YZr4+oBfHvu6z+z3Cc08+AAAAAAAAAAAGpTy+v/mSP2aro74ErL2+nf6evhrlZb0AAAAAAAAAANLyir6WWi8/othAvJ0Apr4AMzi+zOAtPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7DppWV/tqMAWyUTTwBjAF0lEdAm329pM6BAnV9lChoBkdAcWm6f8MuvmgHTYYBaAhHQJt9zpwCKaZ1fZQoaAZHQGzNY287IT5oB01FAWgIR0CbffXgtOEedX2UKGgGR0Bw/RZwGW2PaAdNOwFoCEdAm35gVwgkknV9lChoBkdAbbAUX531SWgHTTQBaAhHQJt/swztTk11fZQoaAZHQHJUn4CZF5RoB01hAWgIR0CbgLw2VE/jdX2UKGgGR0Bwnshouf29aAdNMwFoCEdAm4FFYZEUkHV9lChoBkdAcCuh7VrhzmgHTToBaAhHQJuBbU3GXHB1fZQoaAZHQHDTZyhi9ZloB00sAWgIR0CbgfH58BuGdX2UKGgGR0BxJ860Y0l7aAdNBAFoCEdAm4JbqD9OynV9lChoBkdAbTiwjdHlO2gHTUsBaAhHQJuXm20AtFt1fZQoaAZHQHBCBNdqtYBoB01AAWgIR0CbmFR5C4SZdX2UKGgGR0BwNYcjqv/zaAdNIAFoCEdAm5yvDxb0OHV9lChoBkdAcp04nWrfcmgHTUABaAhHQJud0UtZmqZ1fZQoaAZHQHHpmh24d6toB02BAWgIR0CboR3h4t6HdX2UKGgGR0Btn6c5Ke05aAdNKQFoCEdAm6Iv0RODa3V9lChoBkdAcY2VWjoIOmgHTTcCaAhHQJuiPF1jiGZ1fZQoaAZHQHDXhwl0HQhoB00+AWgIR0CbovVY6nzhdX2UKGgGR0BujwLCvX9SaAdNYwFoCEdAm6P1/QSi/XV9lChoBkdAbj35xBE8aGgHTWUBaAhHQJulpOxjawl1fZQoaAZHQHAmBXjlxOtoB01eAWgIR0CbpeVTJhfCdX2UKGgGR0Bud7xEv0yyaAdNOwFoCEdAm6XxMnJDE3V9lChoBkdAcgQK/Efkm2gHTQoCaAhHQJul/PD50r91fZQoaAZHQG5BIVuaWopoB00AAmgIR0Cbp3SSvC/HdX2UKGgGR0BulyJj2BataAdNRQJoCEdAm6ewRK6FunV9lChoBkdAb82GwiaAnWgHTUsCaAhHQJunxuAI6bR1fZQoaAZHQG2nDLr5ZbJoB00bAmgIR0CbqcJWeYlZdX2UKGgGR0Bxy8zVMEidaAdNUwFoCEdAm6r1baAWi3V9lChoBkdAcQgYFqzqr2gHTVsBaAhHQJusKhufmLd1fZQoaAZHQHDUUOy3TeBoB00mAWgIR0CbrLgL7XQMdX2UKGgGR0Bt/ZzNliBoaAdNJgJoCEdAm61tT987ZHV9lChoBkdAco8k9U0el2gHTYcBaAhHQJuxxbUwztV1fZQoaAZHQG8QIHLRrrRoB00+AWgIR0CbsjmNzbN9dX2UKGgGR0ByXlGb1AZ9aAdNDAFoCEdAm7JTnq3VkXV9lChoBkdAcZOwSamXPmgHTSEBaAhHQJuy1eeFtbd1fZQoaAZHQHGkiMglnh9oB023AWgIR0Cbs+5imVJMdX2UKGgGR0BwF8JSiudPaAdNxQFoCEdAm7h0MLF4s3V9lChoBkdAcFesdT5wfmgHTVQBaAhHQJu9kkLQXyl1fZQoaAZHQG3RS2phnapoB01pAmgIR0Cbvw83Mpw0dX2UKGgGR0BtPl+7UXpGaAdN0wFoCEdAm8F+VopQUHV9lChoBkdAcRB9gF5fMWgHTSMBaAhHQJvCPjaPCEZ1fZQoaAZHQHAEXk5p8F9oB00DAmgIR0CbwmOtnwocdX2UKGgGR0Bw8sfMfRu1aAdNQQFoCEdAm8LGCEpRXXV9lChoBkdAc1pyLyc0+GgHTUgBaAhHQJvDw7KaG6B1fZQoaAZHQHIij/dZaFFoB02XAmgIR0CbxCz9jwx4dX2UKGgGR0A3AUMXrMTwaAdL32gIR0Cb2GdI5HVgdX2UKGgGR0BwbjlPrOZ9aAdNVgFoCEdAm9kpcophF3V9lChoBkdAcV8+QEIPb2gHTWMCaAhHQJvjP9JjDsN1fZQoaAZHQGfeKiGnGbVoB03oA2gIR0Cb43jrzGxVdX2UKGgGR0BoRMzhxYJWaAdN6ANoCEdAm+cdkauOj3V9lChoBkdAcgxrWRRuTGgHTZABaAhHQJvp5g5R0lt1fZQoaAZHQG78tXPqs2hoB03cAWgIR0Cb6egkC3gDdX2UKGgGR0Bj1QfU4JeFaAdN6ANoCEdAm+n25MDfWXV9lChoBkdAbooRjjJdSmgHTcEBaAhHQJvrNPN3W4F1fZQoaAZHQHArbk8zQ/poB00mAmgIR0Cb7JJxNqQBdX2UKGgGR0BxgPRgJC0GaAdN4QFoCEdAm+zP8IiTuHV9lChoBkdAckKHk92X9mgHTaIDaAhHQJvs3Qswtap1fZQoaAZHQGg7erU9ZA9oB03oA2gIR0Cb8IZvUBn0dX2UKGgGR0Bwo/Dbah6CaAdNKgFoCEdAm/JFc6eXiXV9lChoBkdAcVw/T9bX6WgHTcwCaAhHQJv5YSlFc6h1fZQoaAZHQHDPIePq9oNoB03dAmgIR0Cb/ExqfvnbdX2UKGgGR0BwGzPkaMrFaAdNUwFoCEdAm/4LKJVKgHV9lChoBkdAbr6SB9TgmGgHTQICaAhHQJwBgkB0ZFZ1fZQoaAZHQHJJF45cTrVoB01iAWgIR0CcAkFEiMYNdX2UKGgGR0BzZ4xCY1HfaAdNhQNoCEdAnAeDdcjZ+XV9lChoBkdAcGZha1TisGgHTV0BaAhHQJwIiO801qF1fZQoaAZHQHJ8ApazNUxoB02TAWgIR0CcCWnDR+jNdX2UKGgGR0Bw0OuA7PpqaAdNAAJoCEdAnAqSvHLidnV9lChoBkdAaAzGYKIBR2gHTegDaAhHQJwNl9E1EVp1fZQoaAZHQGMruRs/IKdoB03oA2gIR0CcDqcRDkU9dX2UKGgGR0Bvo3qVyFPBaAdN0wJoCEdAnCGrMcIZ63V9lChoBkdAbzA2iL2pQ2gHTaACaAhHQJwinzkIX0p1fZQoaAZHQHKxvRNRFZxoB01JAWgIR0CcJL+GXXyzdX2UKGgGR0AQnMKTjebeaAdL9GgIR0CcJ5MWGh24dX2UKGgGR0BwhAao/A0saAdNHQNoCEdAnCgjcynDSHV9lChoBkdAbGI2606YFGgHTeABaAhHQJwpehmGucN1fZQoaAZHQG3SkDhcZ+BoB01FAWgIR0CcLkkwevIPdX2UKGgGR0Bo8qFj/dZaaAdN6ANoCEdAnDUwf+0gKXV9lChoBkdAcGZHy3CsO2gHTYEBaAhHQJw3EJ7b+Lp1fZQoaAZHQF+Iv6j3225oB03oA2gIR0CcN/i2DxsmdX2UKGgGR0Bw4a0ojOcEaAdNLQNoCEdAnDoXevZAZHV9lChoBkdAbzxziCJ40WgHTdICaAhHQJw7v4wh4dJ1fZQoaAZHQHCuuuq3mV9oB02MAWgIR0CcPJpeeFtbdX2UKGgGR0ByIpH4GlhxaAdNYAFoCEdAnD0/uXu3MXV9lChoBkdAcw+r1/Ue+2gHTf4BaAhHQJw++3RXwLF1fZQoaAZHQHHxA2AG0NVoB02sAWgIR0CcQf5dnkDIdX2UKGgGR0BxQ9Y8uBczaAdNmgJoCEdAnERi/O+qR3V9lChoBkdAZWSnVG0/nmgHTegDaAhHQJxFdfpljEx1fZQoaAZHQHB5zQzDXOJoB02JAmgIR0CcRtCyQgcMdX2UKGgGR0AhAg2ZRbbDaAdL82gIR0CcST1g6U7kdX2UKGgGR0BmzReeFtbcaAdN6ANoCEdAnE99nCfpU3V9lChoBkdAYuU77sOXmmgHTegDaAhHQJxQpq8Djip1fZQoaAZHQHEGHnMdLg5oB02WAWgIR0CcUW6YVqN7dX2UKGgGR0BxIosXizcAaAdNKwJoCEdAnFO6uGKyfXV9lChoBkdAbPBmozeoDWgHTaEBaAhHQJxUPfpD/l11fZQoaAZHQGy/erELpiZoB03vAWgIR0CcVPQF9roGdX2UKGgGR0BxEhYxL0z1aAdNJAFoCEdAnFXgzguRLnV9lChoBkdAcTxo0ALiM2gHTYUBaAhHQJxV4NRWLgp1fZQoaAZHQHHpO5Fw1ixoB01aA2gIR0CcVlCkoF3ZdX2UKGgGR0Byhh7laKUFaAdNUAFoCEdAnFZxlQMx5HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:039f6c788eb64c10079af51539e03e482d9c13e72e12730626ea110c660ec236
|
3 |
+
size 148086
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7906252404c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x790625240550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7906252405e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x790625240670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x790625240700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x790625240790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x790625240820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7906252408b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x790625240940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7906252409d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x790625240a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x790625240af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7906251e3f40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1716019933238246497,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG0qLr7VYxM/1aUqPs5Zfr4ddfw88CJ9PQAAAAAAAAAAmgH1PNhutD+uTqk9n+iivjpm5j2kjzs9AAAAAAAAAAAzP8U8ww0BumgGVrnE+h6zlHsvuwClezgAAIA/AACAP20RbT6SE+g+GwmTvvvXZ77jvk29btdVPAAAAAAAAAAAGt1jPri+gz/KLi8+viezvm9Iiz4u9ae9AAAAAAAAAACAP3G9SIeNutRqqDQPXe8vfc/AuXt0TLMAAIA/AACAP2YOMbwp2Hq6W3rEu1rM+Dcn/K26SjHptgAAgD8AAIA/jVSFPY8OSromIla7cw/WN1YvpDrH1BE6AACAPwAAAAAzY4C9e8qourUwaTpAAFM1OYgZudrBhbkAAIA/AACAP+ZYEr4GY48/iOR/vl0dsr6Apoq+jlo9uwAAAAAAAAAATStSPktXTD9WXgE8kA6LvpHUGz5kMka9AAAAAAAAAACzdZ69x7oEPwRVKj7zcJe+RRqfPSvKx70AAAAAAAAAAPNvjb324FK6/n+Bt+KTR7LobPa6ABSYNgAAgD8AAIA/APvXPXQ/kz8YZr4+oBfHvu6z+z3Cc08+AAAAAAAAAAAGpTy+v/mSP2aro74ErL2+nf6evhrlZb0AAAAAAAAAANLyir6WWi8/othAvJ0Apr4AMzi+zOAtPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7DppWV/tqMAWyUTTwBjAF0lEdAm329pM6BAnV9lChoBkdAcWm6f8MuvmgHTYYBaAhHQJt9zpwCKaZ1fZQoaAZHQGzNY287IT5oB01FAWgIR0CbffXgtOEedX2UKGgGR0Bw/RZwGW2PaAdNOwFoCEdAm35gVwgkknV9lChoBkdAbbAUX531SWgHTTQBaAhHQJt/swztTk11fZQoaAZHQHJUn4CZF5RoB01hAWgIR0CbgLw2VE/jdX2UKGgGR0Bwnshouf29aAdNMwFoCEdAm4FFYZEUkHV9lChoBkdAcCuh7VrhzmgHTToBaAhHQJuBbU3GXHB1fZQoaAZHQHDTZyhi9ZloB00sAWgIR0CbgfH58BuGdX2UKGgGR0BxJ860Y0l7aAdNBAFoCEdAm4JbqD9OynV9lChoBkdAbTiwjdHlO2gHTUsBaAhHQJuXm20AtFt1fZQoaAZHQHBCBNdqtYBoB01AAWgIR0CbmFR5C4SZdX2UKGgGR0BwNYcjqv/zaAdNIAFoCEdAm5yvDxb0OHV9lChoBkdAcp04nWrfcmgHTUABaAhHQJud0UtZmqZ1fZQoaAZHQHHpmh24d6toB02BAWgIR0CboR3h4t6HdX2UKGgGR0Btn6c5Ke05aAdNKQFoCEdAm6Iv0RODa3V9lChoBkdAcY2VWjoIOmgHTTcCaAhHQJuiPF1jiGZ1fZQoaAZHQHDXhwl0HQhoB00+AWgIR0CbovVY6nzhdX2UKGgGR0BujwLCvX9SaAdNYwFoCEdAm6P1/QSi/XV9lChoBkdAbj35xBE8aGgHTWUBaAhHQJulpOxjawl1fZQoaAZHQHAmBXjlxOtoB01eAWgIR0CbpeVTJhfCdX2UKGgGR0Bud7xEv0yyaAdNOwFoCEdAm6XxMnJDE3V9lChoBkdAcgQK/Efkm2gHTQoCaAhHQJul/PD50r91fZQoaAZHQG5BIVuaWopoB00AAmgIR0Cbp3SSvC/HdX2UKGgGR0BulyJj2BataAdNRQJoCEdAm6ewRK6FunV9lChoBkdAb82GwiaAnWgHTUsCaAhHQJunxuAI6bR1fZQoaAZHQG2nDLr5ZbJoB00bAmgIR0CbqcJWeYlZdX2UKGgGR0Bxy8zVMEidaAdNUwFoCEdAm6r1baAWi3V9lChoBkdAcQgYFqzqr2gHTVsBaAhHQJusKhufmLd1fZQoaAZHQHDUUOy3TeBoB00mAWgIR0CbrLgL7XQMdX2UKGgGR0Bt/ZzNliBoaAdNJgJoCEdAm61tT987ZHV9lChoBkdAco8k9U0el2gHTYcBaAhHQJuxxbUwztV1fZQoaAZHQG8QIHLRrrRoB00+AWgIR0CbsjmNzbN9dX2UKGgGR0ByXlGb1AZ9aAdNDAFoCEdAm7JTnq3VkXV9lChoBkdAcZOwSamXPmgHTSEBaAhHQJuy1eeFtbd1fZQoaAZHQHGkiMglnh9oB023AWgIR0Cbs+5imVJMdX2UKGgGR0BwF8JSiudPaAdNxQFoCEdAm7h0MLF4s3V9lChoBkdAcFesdT5wfmgHTVQBaAhHQJu9kkLQXyl1fZQoaAZHQG3RS2phnapoB01pAmgIR0Cbvw83Mpw0dX2UKGgGR0BtPl+7UXpGaAdN0wFoCEdAm8F+VopQUHV9lChoBkdAcRB9gF5fMWgHTSMBaAhHQJvCPjaPCEZ1fZQoaAZHQHAEXk5p8F9oB00DAmgIR0CbwmOtnwocdX2UKGgGR0Bw8sfMfRu1aAdNQQFoCEdAm8LGCEpRXXV9lChoBkdAc1pyLyc0+GgHTUgBaAhHQJvDw7KaG6B1fZQoaAZHQHIij/dZaFFoB02XAmgIR0CbxCz9jwx4dX2UKGgGR0A3AUMXrMTwaAdL32gIR0Cb2GdI5HVgdX2UKGgGR0BwbjlPrOZ9aAdNVgFoCEdAm9kpcophF3V9lChoBkdAcV8+QEIPb2gHTWMCaAhHQJvjP9JjDsN1fZQoaAZHQGfeKiGnGbVoB03oA2gIR0Cb43jrzGxVdX2UKGgGR0BoRMzhxYJWaAdN6ANoCEdAm+cdkauOj3V9lChoBkdAcgxrWRRuTGgHTZABaAhHQJvp5g5R0lt1fZQoaAZHQG78tXPqs2hoB03cAWgIR0Cb6egkC3gDdX2UKGgGR0Bj1QfU4JeFaAdN6ANoCEdAm+n25MDfWXV9lChoBkdAbooRjjJdSmgHTcEBaAhHQJvrNPN3W4F1fZQoaAZHQHArbk8zQ/poB00mAmgIR0Cb7JJxNqQBdX2UKGgGR0BxgPRgJC0GaAdN4QFoCEdAm+zP8IiTuHV9lChoBkdAckKHk92X9mgHTaIDaAhHQJvs3Qswtap1fZQoaAZHQGg7erU9ZA9oB03oA2gIR0Cb8IZvUBn0dX2UKGgGR0Bwo/Dbah6CaAdNKgFoCEdAm/JFc6eXiXV9lChoBkdAcVw/T9bX6WgHTcwCaAhHQJv5YSlFc6h1fZQoaAZHQHDPIePq9oNoB03dAmgIR0Cb/ExqfvnbdX2UKGgGR0BwGzPkaMrFaAdNUwFoCEdAm/4LKJVKgHV9lChoBkdAbr6SB9TgmGgHTQICaAhHQJwBgkB0ZFZ1fZQoaAZHQHJJF45cTrVoB01iAWgIR0CcAkFEiMYNdX2UKGgGR0BzZ4xCY1HfaAdNhQNoCEdAnAeDdcjZ+XV9lChoBkdAcGZha1TisGgHTV0BaAhHQJwIiO801qF1fZQoaAZHQHJ8ApazNUxoB02TAWgIR0CcCWnDR+jNdX2UKGgGR0Bw0OuA7PpqaAdNAAJoCEdAnAqSvHLidnV9lChoBkdAaAzGYKIBR2gHTegDaAhHQJwNl9E1EVp1fZQoaAZHQGMruRs/IKdoB03oA2gIR0CcDqcRDkU9dX2UKGgGR0Bvo3qVyFPBaAdN0wJoCEdAnCGrMcIZ63V9lChoBkdAbzA2iL2pQ2gHTaACaAhHQJwinzkIX0p1fZQoaAZHQHKxvRNRFZxoB01JAWgIR0CcJL+GXXyzdX2UKGgGR0AQnMKTjebeaAdL9GgIR0CcJ5MWGh24dX2UKGgGR0BwhAao/A0saAdNHQNoCEdAnCgjcynDSHV9lChoBkdAbGI2606YFGgHTeABaAhHQJwpehmGucN1fZQoaAZHQG3SkDhcZ+BoB01FAWgIR0CcLkkwevIPdX2UKGgGR0Bo8qFj/dZaaAdN6ANoCEdAnDUwf+0gKXV9lChoBkdAcGZHy3CsO2gHTYEBaAhHQJw3EJ7b+Lp1fZQoaAZHQF+Iv6j3225oB03oA2gIR0CcN/i2DxsmdX2UKGgGR0Bw4a0ojOcEaAdNLQNoCEdAnDoXevZAZHV9lChoBkdAbzxziCJ40WgHTdICaAhHQJw7v4wh4dJ1fZQoaAZHQHCuuuq3mV9oB02MAWgIR0CcPJpeeFtbdX2UKGgGR0ByIpH4GlhxaAdNYAFoCEdAnD0/uXu3MXV9lChoBkdAcw+r1/Ue+2gHTf4BaAhHQJw++3RXwLF1fZQoaAZHQHHxA2AG0NVoB02sAWgIR0CcQf5dnkDIdX2UKGgGR0BxQ9Y8uBczaAdNmgJoCEdAnERi/O+qR3V9lChoBkdAZWSnVG0/nmgHTegDaAhHQJxFdfpljEx1fZQoaAZHQHB5zQzDXOJoB02JAmgIR0CcRtCyQgcMdX2UKGgGR0AhAg2ZRbbDaAdL82gIR0CcST1g6U7kdX2UKGgGR0BmzReeFtbcaAdN6ANoCEdAnE99nCfpU3V9lChoBkdAYuU77sOXmmgHTegDaAhHQJxQpq8Djip1fZQoaAZHQHEGHnMdLg5oB02WAWgIR0CcUW6YVqN7dX2UKGgGR0BxIosXizcAaAdNKwJoCEdAnFO6uGKyfXV9lChoBkdAbPBmozeoDWgHTaEBaAhHQJxUPfpD/l11fZQoaAZHQGy/erELpiZoB03vAWgIR0CcVPQF9roGdX2UKGgGR0BxEhYxL0z1aAdNJAFoCEdAnFXgzguRLnV9lChoBkdAcTxo0ALiM2gHTYUBaAhHQJxV4NRWLgp1fZQoaAZHQHHpO5Fw1ixoB01aA2gIR0CcVlCkoF3ZdX2UKGgGR0Byhh7laKUFaAdNUAFoCEdAnFZxlQMx5HVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c77faa80befc49e93d4ef91a4dd1dfeca5eff71124691dc5e54ef05dbbf1f2f9
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f22f316873f562a204c8d671dcf5f60d0c9c2330cbb5226887261a78372bbb60
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (181 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 269.05239736741885, "std_reward": 7.489577975519297, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-18T08:53:37.871331"}
|