mschiesser
commited on
Commit
•
74ec925
1
Parent(s):
1a9fc27
Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -7,6 +8,16 @@ datasets:
|
|
7 |
model-index:
|
8 |
- name: ner-bert-german
|
9 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,7 +25,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# ner-bert-german
|
16 |
|
17 |
-
This model
|
|
|
|
|
18 |
It achieves the following results on the evaluation set:
|
19 |
- Loss: 0.2450
|
20 |
- Overall Precision: 0.8767
|
@@ -69,4 +82,4 @@ The following hyperparameters were used during training:
|
|
69 |
- Transformers 4.25.1
|
70 |
- Pytorch 1.13.1
|
71 |
- Datasets 2.8.0
|
72 |
-
- Tokenizers 0.13.2
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language: de
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
8 |
model-index:
|
9 |
- name: ner-bert-german
|
10 |
results: []
|
11 |
+
examples: null
|
12 |
+
widget:
|
13 |
+
- text: "Herr Schmidt lebt in Berlin und arbeitet für die UN."
|
14 |
+
example_title: Schmidt aus Berlin
|
15 |
+
- text: "Die Deutsche Bahn hat ihren Hauptsitz in Frankfurt."
|
16 |
+
example_title: Deutsche Bahn
|
17 |
+
- text: "In München gibt es viele Unternehmen, z.B. BMW und Siemens."
|
18 |
+
example_title: München
|
19 |
+
metrics:
|
20 |
+
- seqeval
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
25 |
|
26 |
# ner-bert-german
|
27 |
|
28 |
+
This model can be used to do [named-entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) in German.
|
29 |
+
It is trained on a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the German wikiann dataset.
|
30 |
+
|
31 |
It achieves the following results on the evaluation set:
|
32 |
- Loss: 0.2450
|
33 |
- Overall Precision: 0.8767
|
|
|
82 |
- Transformers 4.25.1
|
83 |
- Pytorch 1.13.1
|
84 |
- Datasets 2.8.0
|
85 |
+
- Tokenizers 0.13.2
|