mschiesser commited on
Commit
74ec925
1 Parent(s): 1a9fc27

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -2
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
@@ -7,6 +8,16 @@ datasets:
7
  model-index:
8
  - name: ner-bert-german
9
  results: []
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -14,7 +25,9 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # ner-bert-german
16
 
17
- This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset.
 
 
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.2450
20
  - Overall Precision: 0.8767
@@ -69,4 +82,4 @@ The following hyperparameters were used during training:
69
  - Transformers 4.25.1
70
  - Pytorch 1.13.1
71
  - Datasets 2.8.0
72
- - Tokenizers 0.13.2
 
1
  ---
2
  license: apache-2.0
3
+ language: de
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
8
  model-index:
9
  - name: ner-bert-german
10
  results: []
11
+ examples: null
12
+ widget:
13
+ - text: "Herr Schmidt lebt in Berlin und arbeitet für die UN."
14
+ example_title: Schmidt aus Berlin
15
+ - text: "Die Deutsche Bahn hat ihren Hauptsitz in Frankfurt."
16
+ example_title: Deutsche Bahn
17
+ - text: "In München gibt es viele Unternehmen, z.B. BMW und Siemens."
18
+ example_title: München
19
+ metrics:
20
+ - seqeval
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
25
 
26
  # ner-bert-german
27
 
28
+ This model can be used to do [named-entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) in German.
29
+ It is trained on a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the German wikiann dataset.
30
+
31
  It achieves the following results on the evaluation set:
32
  - Loss: 0.2450
33
  - Overall Precision: 0.8767
 
82
  - Transformers 4.25.1
83
  - Pytorch 1.13.1
84
  - Datasets 2.8.0
85
+ - Tokenizers 0.13.2