{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ef168647b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691405957934549658, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaGKrsUMpO6I5/KNsTvpjFkbQC76GfrtQAAgD8AAIA/QFCjvQWajj/FDWS+4msYvxBJPb5DxJ69AAAAAAAAAACmuqG9PgNLP+gv3z1YzQK/FNH9vJzfyz0AAAAAAAAAAC3dOr55X4k/GLq/vjuzDb+Ibru+svcfvgAAAAAAAAAALWkgPiktZbx+MF88z4D2ujdGyb2S88e7AAAAAAAAAAAzk2S6PRcNu4IYrDujs408v1M0vE0idT0AAIA/AACAP00Kcz0CC4A/GCt9PbSrEr9EqgI+o11WPQAAAAAAAAAAZl8JvVxrarqLGxe4t3gasz5MxDoCEzE3AACAPwAAgD/mZQw9rluUutc4NL5TvaU8Kh43O0L7jr0AAIA/AACAP6bAMz7fIBg/XRYrvqGu4L5Qd2Q+Tl8fvgAAAAAAAAAAjauKvRZ4ED0N76M+E8DJvt2vFj4Lwto9AAAAAAAAAADNlhg8uDysuyvQjDyUrWw84hQZvZPQSj0AAIA/AACAPwBk7jwppUI+YKzGPIE0175hIrs8/0YQOwAAAAAAAAAAzTMpvbj3uD8SlWO++mURvhvBsr04Pdi9AAAAAAAAAADNXBu7H/ikuyt0Cj1NRIw8rDECve7Jbj0AAIA/AACAP4BkHz3DeXa67kUvs3Lqbq7KwbY6S6HWMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHPGhxo7FKmMAWyUS9CMAXSUR0Cu5ghsImgKdX2UKGgGR0BweMdmxt52aAdLzGgIR0Cu5hA3cYZVdX2UKGgGR0BzGB5u63AmaAdL4mgIR0Cu5hwMpgCwdX2UKGgGR0Byv+dnTRYzaAdLvWgIR0Cu5jO2qkuZdX2UKGgGR0BxCXavicXnaAdLzmgIR0Cu5mqYiPhidX2UKGgGR0BzBXxhDw6RaAdL7GgIR0Cu5nbL2YfGdX2UKGgGR0Bx1TeEZiuuaAdL6mgIR0Cu5twI+nqFdX2UKGgGR0BzIxP420iRaAdL0GgIR0Cu5t91U2k0dX2UKGgGR0BwczN4Z/CqaAdLw2gIR0Cu5vLxy4nXdX2UKGgGR0ByW5iG34KyaAdLzGgIR0Cu5xGax5cDdX2UKGgGR0BycFIlMRHxaAdL0GgIR0Cu5ztIkJKKdX2UKGgGR0Bxj7ag2606aAdL82gIR0Cu53eYlY2bdX2UKGgGR0Bw69XA/LTyaAdL5GgIR0Cu56tZNfw7dX2UKGgGR0BxEuuQp4KQaAdLy2gIR0Cu594ecQRPdX2UKGgGR0BxiMpb2USqaAdLumgIR0Cu5+cUM5OrdX2UKGgGR0BvSRs41gpjaAdL0WgIR0Cu6JIZydWidX2UKGgGR0BxMw4DLbHqaAdLwWgIR0Cu6K1MdtEYdX2UKGgGR0Bx4ybKA8SxaAdL62gIR0Cu6LhvrGBGdX2UKGgGR0ByJjronrpraAdL6WgIR0Cu6MwbuMMrdX2UKGgGR0BwwlOWSlnAaAdL3mgIR0Cu6NUZ3s5XdX2UKGgGR0BzBzCEYfnwaAdL+WgIR0Cu6QMY2sJZdX2UKGgGR0BzgzCXQdCFaAdL3GgIR0Cu6RKZtvXLdX2UKGgGR0BvfhIQOFxoaAdLyGgIR0Cu6T4fwI+odX2UKGgGR0BupAMSbpeNaAdLzWgIR0Cu6UhQemvXdX2UKGgGR0ButOz2OAAiaAdL1WgIR0Cu6XffwZwXdX2UKGgGR0BwwytCAtnPaAdL1GgIR0Cu6Y5K3/gjdX2UKGgGR0BxXPu+h4+saAdL22gIR0Cu6c5v1lGxdX2UKGgGR0BvHJCdBjWkaAdLzmgIR0Cu8weKTB69dX2UKGgGR0BwtiSX+l0paAdLwGgIR0Cu8xgK4QSSdX2UKGgGR0By6IA4n4O+aAdL0mgIR0Cu87MIE8q4dX2UKGgGR0Bz5sLeANG3aAdL3mgIR0Cu891V5rxidX2UKGgGR0ByvsHoouwpaAdLzGgIR0Cu9Mmn4wh4dX2UKGgGR0Bx3z92ovSMaAdLzGgIR0Cu9NdOymhudX2UKGgGR0ByiXWH1vl2aAdL1WgIR0Cu9Nd7F85TdX2UKGgGR0Bx49BTn7pFaAdLvGgIR0Cu9NdkjHGTdX2UKGgGR0ByEKC6H0sfaAdL5GgIR0Cu9O593KSxdX2UKGgGR0Bvo+eYlY2baAdL9GgIR0Cu9VEBCD28dX2UKGgGR0BzcGkHlfZ3aAdL32gIR0Cu9X38O09hdX2UKGgGR0BxoEgQpWmxaAdL02gIR0Cu9ZLd30PIdX2UKGgGR0Bvg/VmSQo1aAdL1mgIR0Cu9eKaoddWdX2UKGgGR0Bwo7NPgvUSaAdL8GgIR0Cu9fr/S6UadX2UKGgGR0Bu8EGJN0vHaAdL1WgIR0Cu9gR6nivQdX2UKGgGR0Bxi9s2vStvaAdLvGgIR0Cu9ie7L+xXdX2UKGgGR0Bw+s/TspocaAdLzGgIR0Cu9jhvR7Z4dX2UKGgGR0Bwy1nqVyFPaAdL22gIR0Cu9p9ovi97dX2UKGgGR0BymO/Yao/BaAdLvmgIR0Cu9soa99MLdX2UKGgGR0BvJ8DKYAsDaAdL1mgIR0Cu92GKZUkwdX2UKGgGR0BzY087p3X7aAdLuWgIR0Cu+AXzDn/2dX2UKGgGR0BxAkgs9SuRaAdL2mgIR0Cu+IhbGFSLdX2UKGgGR0BwrVFPSDywaAdL22gIR0Cu+Iv5P/JedX2UKGgGR0BznOMS9M9KaAdL4mgIR0Cu+KQnpjc3dX2UKGgGR0Bz5DLmp2lmaAdL72gIR0Cu+MCb2Dg7dX2UKGgGR0Bxm5m/WUbDaAdL02gIR0Cu+NFw1ivxdX2UKGgGR0By/HlMh5gPaAdLy2gIR0Cu+NiGWUr1dX2UKGgGR0BzDuXhOxjbaAdLzGgIR0Cu+SRyfcvedX2UKGgGR0Bw3Epb2USqaAdL5WgIR0Cu+TNI9TxYdX2UKGgGR0BwUd7zCk44aAdLzmgIR0Cu+UPPcBU8dX2UKGgGR0BzTvJMg2ZRaAdL0mgIR0Cu+WTq8lHCdX2UKGgGR0BxYvcynDR/aAdL3mgIR0Cu+W52IO6NdX2UKGgGR0Bwd6qwQlKLaAdLw2gIR0Cu+YhePaL5dX2UKGgGR0BzW8G1QZXNaAdL2mgIR0Cu+YrEDQqqdX2UKGgGR0BwpJbD/EOzaAdLwWgIR0Cu+aEMTewcdX2UKGgGR0Bw6DJ3gUDdaAdLwmgIR0Cu+f52ZApsdX2UKGgGR0BznhU3n6l+aAdLu2gIR0Cu+s/pdKNAdX2UKGgGR0BxZvKcNH6NaAdL0mgIR0Cu+wcEmpl0dX2UKGgGR0ByKjTiKiwjaAdL1WgIR0Cu+wyI55qudX2UKGgGR0BxxbQqqfe2aAdL+2gIR0Cu+yw/oq0/dX2UKGgGR0ByLcSWZ7XyaAdLy2gIR0Cu+zkR8MNMdX2UKGgGR0ByRKF10T11aAdL4mgIR0Cu+3Fpfx+bdX2UKGgGR0Bu2xY3eenRaAdLzWgIR0Cu+5pcX3xndX2UKGgGR0BymW0D2alUaAdLzWgIR0Cu+6iSA6MjdX2UKGgGR0ByMLHFPznSaAdL8mgIR0Cu+7UVSGahdX2UKGgGR0BxahFWn0kGaAdL0WgIR0Cu+8BqKxcFdX2UKGgGR0ByUlXPqs2faAdLy2gIR0Cu+9Ti83+/dX2UKGgGR0Bz60HMUypJaAdLxmgIR0Cu++V9F4LUdX2UKGgGR0BwdbskY4yXaAdL1WgIR0Cu+/Cn5zo2dX2UKGgGR0Bzlc1AJLM+aAdLzWgIR0Cu+/jsdDIBdX2UKGgGR0BzTA+wC8vmaAdLy2gIR0Cu/A+OwPiDdX2UKGgGR0BxnEBBAv+PaAdL6GgIR0Cu/MADA8B/dX2UKGgGR0ByDEw22oegaAdL1GgIR0Cu/UwarFOxdX2UKGgGR0Bw428274BWaAdLy2gIR0Cu/Wy7oStedX2UKGgGR0BwYdzFMqSYaAdLwmgIR0Cu/XaEi+tbdX2UKGgGR0BzmIS8J2MbaAdLv2gIR0Cu/eMAFPi2dX2UKGgGR0BzYuHTI/7jaAdL6GgIR0Cu/ea1Cw8odX2UKGgGR0Bwo49/z8P4aAdLwmgIR0Cu/g+Il+mWdX2UKGgGR0BzAJ1W8yvcaAdLyGgIR0Cu/k7wz+FUdX2UKGgGR0BxfE8xKxs3aAdL8mgIR0Cu/lXOv+wUdX2UKGgGR0Bxn7MHKOktaAdL2mgIR0Cu/lOYIBzWdX2UKGgGR0BvhZsbedkKaAdL1GgIR0Cu/oXFtKqXdX2UKGgGR0BxM4/cFhXsaAdL0mgIR0Cu/qeN96TodX2UKGgGR0Bx+LKuB+WoaAdL6mgIR0Cu/q2ZRbbDdX2UKGgGR0BxQlBLPD51aAdL82gIR0Cu/vsOf/WEdX2UKGgGR0Bye4PTXrdFaAdNIQFoCEdArv8iLhrFfnV9lChoBkdAcWHRUWEbpGgHS8BoCEdArv86XnhbW3V9lChoBkdAcQJIhQm/nGgHS8RoCEdArwABZ+x4ZHV9lChoBkdAclumfGuLaWgHS9doCEdArwAbT6SDAnV9lChoBkdAcmkIppeu3mgHS+JoCEdArwBlFMIu5HV9lChoBkdAceDEdeY2KmgHS8BoCEdArwCZjc2zfXV9lChoBkdAcs2ssg+yJWgHS9RoCEdArwC06kqMFXV9lChoBkdAcsFc+7lJYmgHS9poCEdArwDTBdld1XVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 543, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}