mradermacher commited on
Commit
7038cce
1 Parent(s): 4c2dfa2

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -1 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  static quants of https://huggingface.co/CultriX/NeuralMona_MoE-4x7B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - CultriX/MonaTrix-v4
4
+ - mlabonne/OmniTruthyBeagle-7B-v0
5
+ - CultriX/MoNeuTrix-7B-v1
6
+ - paulml/OmniBeagleSquaredMBX-v3-7B
7
+ exported_from: CultriX/NeuralMona_MoE-4x7B
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ license: apache-2.0
12
+ quantized_by: mradermacher
13
+ tags:
14
+ - moe
15
+ - frankenmoe
16
+ - merge
17
+ - mergekit
18
+ - lazymergekit
19
+ - CultriX/MonaTrix-v4
20
+ - mlabonne/OmniTruthyBeagle-7B-v0
21
+ - CultriX/MoNeuTrix-7B-v1
22
+ - paulml/OmniBeagleSquaredMBX-v3-7B
23
+ ---
24
+ ## About
25
+
26
  static quants of https://huggingface.co/CultriX/NeuralMona_MoE-4x7B
27
+
28
+
29
+ <!-- provided-files -->
30
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
31
+ ## Usage
32
+
33
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
34
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
35
+ more details, including on how to concatenate multi-part files.
36
+
37
+ ## Provided Quants
38
+
39
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
40
+
41
+ | Link | Type | Size/GB | Notes |
42
+ |:-----|:-----|--------:|:------|
43
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q2_K.gguf) | Q2_K | 9.1 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ3_XS.gguf) | IQ3_XS | 10.1 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q3_K_S.gguf) | Q3_K_S | 10.7 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ3_S.gguf) | IQ3_S | 10.7 | beats Q3_K* |
47
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ3_M.gguf) | IQ3_M | 10.9 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q3_K_M.gguf) | Q3_K_M | 11.8 | lower quality |
49
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q3_K_L.gguf) | Q3_K_L | 12.8 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ4_XS.gguf) | IQ4_XS | 13.3 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q4_0.gguf) | Q4_0 | 13.9 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q4_K_S.gguf) | Q4_K_S | 14.0 | fast, recommended |
53
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ4_NL.gguf) | IQ4_NL | 14.0 | slightly worse than Q4_K_S |
54
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q4_K_M.gguf) | Q4_K_M | 14.9 | fast, recommended |
55
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q5_K_S.gguf) | Q5_K_S | 16.9 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q5_K_M.gguf) | Q5_K_M | 17.4 | |
57
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q6_K.gguf) | Q6_K | 20.1 | very good quality |
58
+ | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q8_0.gguf) | Q8_0 | 25.9 | fast, best quality |
59
+
60
+
61
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
62
+ types (lower is better):
63
+
64
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
65
+
66
+ And here are Artefact2's thoughts on the matter:
67
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
68
+
69
+ ## Thanks
70
+
71
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
72
+ me use its servers and providing upgrades to my workstation to enable
73
+ this work in my free time.
74
+
75
+ <!-- end -->