--- base_model: Nekochu/Luminia-13B-v3 datasets: - Nekochu/discord-unstable-diffusion-SD-prompts - glaiveai/glaive-function-calling-v2 - TIGER-Lab/MathInstruct - Open-Orca/SlimOrca - GAIR/lima - sahil2801/CodeAlpaca-20k - garage-bAInd/Open-Platypus language: - en library_name: transformers license: apache-2.0 model_creator: Nekochu model_name: Luminia 13B v3 model_type: llama2 prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {Instruction} {summary} ### input: {category} ### Response: {prompt}' quantized_by: mradermacher tags: - llama-factory - lora - generated_from_trainer - llama2 - llama - instruct - finetune - gpt4 - synthetic data - stable diffusion - alpaca - llm --- ## About static quants of https://huggingface.co/Nekochu/Luminia-13B-v3 weighted/imatrix quants are available at https://huggingface.co/mradermacher/Luminia-13B-v3-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Luminia-13B-v3-GGUF/resolve/main/Luminia-13B-v3.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.